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Abstract

This research explores radially convergent contaminant

transport in an aquifer towards an extraction well. This thesis

presents the equations governing the transport of a contaminant

during aquifer remediation by pulsed pumping. Contaminant

transport is assumed to be affected by radial advection,

dispersion, and sorption/desorption. Sorption is assumed to be

either equilibrium or rate-limited, with the rate-limitation

described by either a first-order law, or by Fickian dif :usion

of contaminant through layered, cylindrical, or spherical

immobile water regions. The equations are derived using an

arbitrary initial distribution of contaminant in both the mobile

and immobile regions, and they are analytically solved in the

Laplace domain using a Green's function solution. The Laplace

solution is then converted to a formula translation (FORTRAN)

source code and numerically inverted back to the time domain.

The resulting model is tested against another analytical Laplace

transform model and a numerical finite element and finite

difference model. Model simulations are used to show how pulsed

pumping operations can improve the efficiency of contaminated

aquifer pump-and-treat remediation activities.
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ANALYTICAL MODELING OF AQUIFER DECONTAMINATION BY PULSED

PUMPING WHEN CONTAMINANT TRANSPORT IS AFFECTED

BY RATE-LIMITED SORPTION AND DESORPTION

IgIntroduction

Groundwater is the source of drinking water for

approximately 48,000 communities and twelve million individuals

across the country. Almost all rural households and thirty-four

of the nation's 100 largest cities depend upon groundwater as

their drinking water source [Wentz, 1989:271] . Historically,

groundwater has been considered an unlimited and safe source of

drinking water. However, the widespread contamination of

groundwater due to years of accidental or deliberate dumping of

various synthetic organic chemicals is becoming an issue of

growing importance in the United States. Many of these

chemicals are known or potential carcinogens or teratogens and

their presence in the groundwater, even at low concentrations,

presents serious and substantial health risks [Chiras, 1991:388;

Wentz, 1989:270].

It has been estimated that "more than 70 percent of the

nearly 1,200 hazardous-waste sites on the Superfund National

Priorities List (NPL) are contaminated with chemicals at levels

exceeding federal drinking-water standards" [National,
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1991:117]. In addition, over 33,000 other sites have been

identified and included in the Comprehensive Environmental

Response, Compensation, and Liability Information System for

ranking and potential inclusion on the NPL. Furthermore.

groundwater contamination has been identified or is suspected at

more than 1,700 Resource Conservation and Recovery Act

facilities. These sites constitute an immense groundwater

contamination problem [Olsen and Kavanaugh, 1993:42]. In

response, the Air Force is engaged in a program to identify,

assess, and remediate hazardous waste sites at military

installations throughout the United States [Goltz, 1991:24;

Installation Restoration Program Handout, 1992]. This program

is known as the Installation Restoration Program (IRP).

IRP cleanups will cost the Air Force an estimated $7-10

billion over the next ten years [Vest, 1992]. A substantial

portion of IRP costs is associated with groundwater

contamination remediation. Consequently, site remediations

often include aquifer cleanup efforts. Because of the rising

cost to perform aquifer remediation, it is critical that

decisions made regarding groundwater cleanup be based upon the

best available information. One major source of information

provided to IRP decision makers comes from contaminant transport

models [Goltz, 1991:24].

Contaminant transport modeling plays an important part in

aquifer remediation. These mathematical models are used as

tools for predicting trends over short or long term periods by
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simulating the effects of various processes occurring

simultaneously in an aquifer that can affect the transport or

concentration of pollutants [Ismail, 1987:274]. The knowledge

gained using these models can be applied by IRP planners to

determine the effectiveness of various groundwater treatment

technologies, estimate risk, and make predictions about the cost

and duration of cleanup efforts [Goltz, 1991:24]. One problem

with these models involves assumptions that are made to simulate

the chemical, biological, or physical processes that are

occurring in the aquifer [Goltz, 1991:24]. Model simulations

may significantly differ from reality, depending on actual site

conditions.

One assumption commonly made when modeling organic

contaminant transport is the local equilibrium assumption (LEA)

[Goltz, 1991:24]. The LEA is one method used to describe the

relationship between the amount of contaminant that is sorbed to

soil particles in the aquifer and the amount dissolved in the

water (aqueous). Under the LEA, a retardation factor is used to

account for the sorption of the contaminant to the soil. The

use of this retardation factor implies an instantaneous

equilibration between the aqueous and sorbed contaminant [Goltz,

1991:24]. Thus, the LEA assumes the contaminant sorbed to the

soil particles is instantaneously desorbed into the clean water

as an extraction pump extracts contaminated water and clean

water flows in to replace it [Goltz, 1991:24] . Since organic

contamination is a main concern at Air Force installations, the
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LEA is often used to model contaminant fa~e and transport at Air

Force IRP sites [Goltz, 1991:24]. However, the occurrence of

two phenomena in several laboratory and field studies suggests

the LEA is often not a valid assumption [Goltz, 1991:24; Goltz

and Roberts, 1988; Brusseau and Rao, 1989:41; Weber and others,

1991:505].

The first phenomenon is termed 'tailing', and it is used to

describe the asymptotic decrease in the rate of reduction of

contaminant concentration in extracted water after a relatively

rapid initial decrease. The second phenomenon, termed

'rebound', involves the increase in contaminant concentration

that is observed after cessation of pumping. Oftentimes, this

behavior is observed several years after the pump or pumps have

been stopped and the hazardous site closed [Goltz, 1991:25;

Valocchi, 1986; EPA 600/8-90/003, 1990:14; Keely and others,

1987:91: Travis and Doty, 1990:1465; Mackay and Cherry,

1989:633]. Under these conditions, it appears that contaminant

in the sorbed -.-id aqueous phases does not instantaneously

equilibrate but only slouly reaches equilibrium [Goltz and

Oxley, 1991:547]. This rate-limited sorption/desorption can

have a significant impact on contaminant transport and lead to

differences between reality and model simulations based on the

LEA. By making the LEA assumption, the effects of rate-limited

sorption/desorption are not considered, possibly resulting in

underestimating concentration levels, cost, and duration of

cleanup efforts [Goltz and Oxley, 1991:547].
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Some researchers have suggested a pumping scheme that

enhances the traditional 'pump and treat' (groundwater

extraction and treatment) approach by accounting for slow

desorption [Goltz, 1991:25; Borden and Kao, 1992:34; Mackay and

Cherry, 1989:633; Haley and others, 1991:124]. It has been

proposed that a pumping convention that allows for periods of

time when pumps are shut off (pulsed pumping) would improve the

efficacy of a pump and treat system. During periods when the

pump is off, slow desorption would occur, and when the pumps are

turned on again, water containing higher concentrations of

contaminant would be removed [Goltz, 1991:25; Borden and Kao,

1992:34; Mackay and Cherry, 1989:633; Haley and others,

1991:124; Environmental Protection Agency 540/2-89/054, 1989:5-

2].

It appears that slow sorption is 'real' and is evident by

the observance of tailing and rebound at IRP sites. Therefore,

the Air Force needs a better tool that incorporates this

behavior. A pulsed pump model is one approach that may lend

itself to account for this phenomena, and as a result provide

IRP decision makers with vital information regarding contaminant

concentration levels, remediation alternatives, and realistic

estimates of cleanup duration.

SUacific Porblmm

The purpose of this research is to analytically model

aquifer decontamination by pulsed pumping when contaminant
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transport is affected by rate-limited sorption and desorption.

This research will extend the work of Goltz and Oxley [Goltz and

Oxley, 1991] and Carlson and others [Carlson and others, 1993].

]Rananrch O]betivas

The specific objectives of this research are to:

1. Derive the governing differential equations and analytical

Laplace solutions, as presented by Carlson and other [Carlson

and others, 1993], describing contaminant transport by means of

radial advection, dispersion, and sorption/desorption in an

aquifer undergoing remediation by pulsed pumping.

Sorption/desorption is assumed: at local equilibrium, rate-

limited modeled by a two-region first-order rate process, and

rate-limited due to Fickian diffusion of the contaminant through

immobile water regions of simple geometry (rectangular,

cylindrical, and spherical).

2. Develop a computer model by coding the analytical Laplace

solutions presented by Carlson and others.

3. Perform simulations, using the model, of contaminant

concentrations at a pulsed pumped extraction well and along an

arbitrary radius of the contaminated area. This will provide

insight on the effect of sorption/desorption on contaminant

concentrations at the wellhead and other locations due to the

assumptions of local equilibrium, two-region first-order rate,

and Fickian diffusion.
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4. Perform a comparison test with existing models that

incorporate rate-limited sorption/desorption. This will provide

model verification.

Seog. and Limitations

To be solved analytically, model equations must be simple.

The simplifying assumptions used in this research are listed

below.

1. Contaminant transport is described by steady, uniform,

converging radial flow and occurs as a result of advection due

to the well when the pump is on. This research assumes the

t-isr-rt due to the natural groundwater gradient is negligible.

2. Only a single, infinite, homogeneous unconfined aquifer of

constant height is considered; it is bounded by a horizontal

aquitard with no seepage.

3. The drawdown of the aquifer water table due to pumping is

negligible.

4. A single, fully penetrating extraction well is considered;

it is placed at the center of the contaminated area.

5. In the governing contaminant transport equations, molecular

diffusion is considered negligible with respect to mechanical

dispersion when the pump is on. However, when the pump is off,

contaminant transport is due solely to molecular diffusion.

6. The initial contamination distribution is radially

symmetric.
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Key terms associated with contaminant transport and aquifer

remediation, as defined by the Environmental Protection Agency

(EPA) unless otherwise specified, are listed below

[Environmental Protection Agency, 600/8-90/003, 1990;

Environmental Protection Agency, 540/S-92/016, 1993].

1. Absorption: A uniform penetration of the solid by a

contaminant.

2. Adsorption: An excess contaminant concentration at the

surface of a solid.

3. Advection: The process whereby solutes are transported by

the bulk mass of flowing fluid.

4. Aquifer: A geologic unit that contains sufficient saturated

permeable material to transmit significant quantities of water.

5. Aquitard: A relatively impermeable layer that greatly

restricts the movement of groundwater [Masters, 1991:148].

6. Breakthrough Curve: Contaminant concentration versus time

relation [Freeze and Cherry, 1979:391].

7. Cleanup: The attainment of a specified contaminant

concentration [Goltz and Oxley, 1991:547].

8. Concentration Gradient: Movement of a contaminant from a

region of higher concentration to a region of lower

concentration [Freeze and Cherry, 1979:25].

9. Unconfined aquifer: An aquifer in which the water table

forms the upper boundary [Freeze and Cherry, 1979:48].

10. Desorption: The reverse of sorption.
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11. Diffusion: Mass transfer as a result of random motion of

molecules. It is described by Fick's first and second law.

12. Dispersion: The spreading and mixing of the contaminant in

groundwater caused by diffusion and mixing due to microscopic

variations in velocities within and between pores.

13. Extraction Well: A pumped well used to remove contaminated

groundwater.

14. Homogeneous: A geologic unit in which the hydrologic

properties are identical from point to point.

15. Pulsed Pumping: A pump and treat enhancement where

extraction wells are periodically not pumped to allow

concentrations in the extracted water to increase.

16. Retardation: The movement of a solute through a geologic

medium at a velocity less than that of the flowing groundwater

due to sorption or other removal of the solute.

17. Sorption: The generic term used to encompass the phenomena

of adsorption and absorption.

18. Tailing: The slow, nearly asymptotic decrease in

contaminant concentration in water flushed through contaminated

geologic material.

IRP planners use contaminant transport models to assess

risk, to design remedies, and to estimate remediation cost and

cleanup duration at IRP hazardous sites. Chapter I examined one

modeling assumption often employed at these sites and discussed
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how this assumption does not account for the slow or rate-

limited sorption/desorption that has been observed in several

laboratory and field studies. A pulsed pumping scheme was

proposed as a technique to enhance the effectiveness of

groundwater pump and treat systems by accounting for rate-

limited sorption/desorption. This chaptcr concludes with a

research proposal to analytically model aquifer decontamination

by pulsed pumping when the contaminant transport is affected by

rate-limited borption and desorption.

Chapter II discusses the literature associated with sorbing

solute transport modeling. An introduction of the processes

thought to control the subsurface movement of contaminants is

presented. Then, the chapter reviews the efforts of researchers

to develop mathematical models to account for equilibrium

sorption and nonequilibrium sorption. Chapter III presents the

derivation of Carlson and others analytical solutions [Carlson

and others, 1993] describing contaminant transport by means of

r&dial advection, dispersion, and sorption/desorption in an

aquifer undergoing pulsed pumping operations.

Sorption/desorption is described assuming: linear equilibrium,

rate-limitation modeled by a two-region first-order rate

process, and rate-limitation due to Fickian diffusion of the

contaminant through immobile water of cylindrical, spherical,

and rectangular geometry. In Chapter IV, a discussion on some

of the numerical techniques used to code the analytical

solutions is presented. Then, model simulations are conducted

1-10



using pulsed and continuous pumping schemes and varying the

initial contaminant concentration distribution. Model

simulations are used to show how pulsed pumping operations can

improve the efficiency of contaminated aquifer pump and treat

remediation activities. Finally, the model is compared with two

existing models found in the literature that incorporate rate-

limited sorption and desorption. Several breakthrough curves

and tables are generated and used to illustrate the simulations

and model comparisons. Chapter V summarizes the research, draws

conclusions based on the findings, and offers recommendations

for further research.

1-11



II. Literat~ura Raview

Installation Restoration Program (IRP) site remediations

often include aquifer cleanup and frequently involve the

operation of a system of extraction wells [Goltz and Oxley,

1991:547; Valocchi, 1986:1696; Keely and others, 1987:91; Mackay

and Cherry, 1989:630]. Theoretical research and field

observations have found that the contaminant load discharged by

the extraction wells asymptotically declines over time and

eventually approaches a residual level. Contaminant

concentrations slowly decrease once they reach this plateau,

resulting in long cleanup times (Figure 2.1).

KL 2N
MAX

z
0
P

z
ILI RESIDAL
0Z) CONCENTRATIONz
0

- TIME --D-

Figure 2.1. Effluent Concentration Pattern for
Continuous Wellfield Operations
[Keely and others, 1987]
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This leveling-off phenomenon is termed 'tailing'. As

pumping continues, large volumes of water are extracted and

treated to remove only small quantities of contaminants [Goltz

and Oxley, 1991:547; Keely and others, 1987:91; Mackay and

Cherry, 1989:630; Olsen and Kavanaugh, 1993:44]. Depending on

the amount of contaminant remaining in the aquifer, "this may

cause remediation to be continued indefinitely, or it may lead

to premature cessation of the remediation and closure of the

site" [Keely and others, 1987:91]. The cessation of pumping is

of concern because once the pumps are turned off, the

contaminant concentration in the groundwater has been observed

to rise. This phenomenon, termed 'rebound', is particularly of

concern if the remediation is discontinued prior to the removal

of all residual contaminants (Figure 2.2) [Keely and others,

1987:91; Mackay and Cherry, 1989:633; Travis and Doty,

1990:1465].
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Figure 2.2. Potential Groundwater Contamination
Response to Cessation of Continuous
Pumping [Keely and others, 19871

The models presently being used at IRP sites do not account

for tailing and rebound. Thus, pollutants may persist longer

dnd at a higher concentration than predicted by current models

[Goltz, 1991:241. Researchers suggest that tailing and rebound

could be due to rate-limited sorption and desorption of a

contaminant from the solids in an aquifer [Goltz and Oxley,

1991:547; Mackay and Cherry, 1989:633; Keely and others,

1987:94) or due to the molecular diffusion into low permeability

regions or regions of immobile water [Goltz and Roberts, 1986;

Goltz and Roberts, 1988; Goltz and Oxley, 1991].

This chapter presents a review of the literature related to

sorbing solute transport modeling. It begins with an

introduction of the processes thought to control contaminant

transport in an aquifer. Then, the chapter reviews mathematical
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models that account for the sorption process. More

specifically, a model review is presented with a discussion

focusing on the impact and significance of equilibrium

sorption/desorption and rate-limited (nonequilibrium)

sorption/desorption in immobile regions of an aquifer. Next,

the chapter explores the modeling efforts involving pulsed

pumping. Finally, some conclusions are drawn based on the

literature review.

ContamJnant Tranot Processes

To understand contaminant transport modeling, it is first

necessary to describe the various processes thought to control

the subsurface movement of contaminants. For purposes of this

thesis, subsurface refers to the saturated zone (below the water

table) in an aquifer. These processes are related to the flow

of contaminants dissolved in groundwater [National Research

Council, 1990:281. Dissolved contaminant transport is due to a

variety of processes. The National Research Council (NRC)

divides these processes into two groups: (1) mass transport and

(2) mass transfer [National Research Council, 1990: 37].

Mass Transport. Mass transport are physical processes

responsible for fluxes (flow) in the groundwater system. These

mass fluxes occur due to advection, diffusion, and hydrodynamic

dispersion.

Advection is the primary process responsible for contaminant

transport in the subsurface [National Research Council,

1990:37] . Movement of the contaminant mass occurs due to the
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movement of the groundwater, and in general, it is assumed that

the dissolved mass is transported in the same direction and with

the same velocity as the groundwater [National Research Council,

1990:37; Freeze and Cherry, 1979:389].

Diffusion is the process where contaminant mass spreads due

to molecular constituents moving in response to a concentration

gradient (movement from an area of high concentration to an area

of lower concentration) [Freeze and Cherry, 1979:103]. The

process of diffusion is often referred to as molecular diffusion

or ionic diffusion. Diffusion occurs in the absence of any

movement of solution. If the solution is flowing, diffusion is

partially responsible for contaminant mass mixing [Freeze and

Cherry, 1979:103]. The process of diffusion ceases only when

the concentration gradients become nonexistent.

Hydrodynamic dispersion is a process that accounts for the

spreading of a solute from a path that it would be expected to

follow according to the advective process in a flow system

[Freeze and Cherry, 1979:75] . Because of this spreading,

dispersion causes dilution of the solute; hence, it is a mixing

process. Dispersion can be considered to consist of two

components: mechanical dispersion (mechanical mixing during

fluid advection) and molecular diffusion of the solute particle

[Freeze and Cherry, 1979:75]. Mechanical dispersion occurs as a

consequence of local variability in velocity [National Research

Council, 1990:41]. On a microscopic scale, this variability may

be caused by velocity variations within individual pores or due
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to the branching of pore channels [Freeze and Cherry, 1979:75-

76; National Research Council, 1990:40-41]. The relationship

between mechanical dispersion and molecular diffusion is

dependent upon groundwater flow velocities. At modest flows,

the common assumption is that the molecular diffusion component

of hydrodynamic dispersion is negligible and the mechanical

component is responsible for the spreading. At very slow

groundwater flow velocities, diffusion may dominate

[Environmental Protection Agency 540/4-89/005, 1989:4].

Mass Transfer. Mass transfer processes redistribute

contaminant mass within or between phases through chemical and

biological reactions (National Research Council, 1990:8]. There

is a multitude of these processes, each of them impacting the

transport of a contaminant differently. Of the various

processes, sorption is considered to be one of the most

important since it can have profound effects on contaminant

transport, fate, and removal [Brusseau and Rao, 1989:33; Goltz

and Oxley, 1991:547; Environmental Protection Agency 540/S-

92/016, 1993] T n this thesis, sorption is the only mass

transfer process considered.

The Environmental Protection Agency (EPA) defines sorption

as

the interaction of a contaminant with a solid. More
specifically, the term can be further divided into
adsorption and absorption. The former refers to an
excess contaminant concentration at the surface of a
solid while the latter implies a more or less uniform
penetration of the solid by a contaminant. In most
environmental settings, this distinction serves little

2-6



purpose as there is seldom information concerning the
specific nature of the interaction. The term sorption
is used in a generic way to encompass both phenomena.
[Environmental Protection Agency 540/S-92/016]

The effect of sorption is to retard or slow the movement of

contaminants in the groundwater. When sorption occurs, the rate

at which the contaminant is transported is lower than would be

the case for an unretarded solute. This process not only

reduces the movement of contaminants in the groundwater, it also

makes it more difficult to remove contaminants from an aquifer.

That is,

the slow desorption of contaminants from the solid to
the liquid phase can significantly reduce the
effectiveness of a pump-and-treat system by
progressively lowering contaminant concentrations in
water pumped to the surface. It is not uncommon to
pump a system until contaminant concentrations in the
pumped water meet a mandated restoration level, while
the aquifer's solid phase still contains a substantial
contaminant mass. [Environmental Protection Agency
540/S-92/016, 1993]

As a result, both the time and cost to remediate to a cleanup

level are increased [National Research Council, 1990:45-46;

Goltz and Oxley, 1991:547; Mackay and Cherry, 1989:633]. The

behavior, transport, and fate of contaminants in the subsurface

is dependent upon the mass transport and mass transfer

reactions, which in turn, depend on contaminant and aquifer

properties [Weber and others, 1991:499].

Advoetion-DiLaprsion-Sorptioin Modala

Mathematical models are commonly used in groundwater studies

to represent those physical and chemical processes that are
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occurring in an aquifer [Goltz, 1991:24; National Research

Council, 1990:1,28,38; Freeze and Cherry, 1979:18-19]. These

models attempt to simulate the actual behavior of contaminant

resulting from these processes by solving mathematical equations

[National Research Council, 1990:52]. These models provide a

source of information about contaminant transport processes that

can assist in the design of remedial programs, risk assessment,

and predict cost and cleanup duration at contaminated sites

[Goltz, 1991:24].

The following sections examine the efforts of researchers to

develop mathematical models to account for the chemical and

physical processes that control sorbing solute transport. The

mathematical formulation of the sorption processes assumes

linear equilibrium, rate-limitation modeled by a two-region

first-order rate process, and rate-limitation due to Fickian

diffusion of the contaminant through immobile water of

cylindrical, spherical, and rectangular geometry.

The mathematical formulation of the physical and chemical

processes that govern dissolved sorbing transport of a single

contaminant in saturated, homogeneous porous media has

traditionally been modeled with advection, dispersion, and a

sink term to describe the transfer of contaminant from the

aqueous phase to the solid phase [Freeze and Cherry, 1979:402].

Equation (2.1) shows, in cylindrical coordinates, the mass

balance equation typically used to account for these processes:
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WC(r, t) D(r) 2C(r, t) V(r) WC(r, t) p aS(r, t) (2.1)
-D )0 C

where C(r, t) is the contaminant aqueous concentration [M / 12],

r is the radial coordinate [L], t is time [T], D(r) is the

mobile region hydrodynamic dispersion coefficient [L! I T], V(r)

is the mobile region seepage velocity [L / T], p is the bulk

density of aquifer material [M / V], 0 is the aquifer porosity

[unitless], and S(r, t) is the sorbed contaminant tunitless].

The first, second, and third terms on the right-hand side (rhs)

of the Equation (2.1) represent dispersion, advection, and

sorption of the contaminant, respectively. This equation is the

governing equation for sorbing contaminant transport.

Chen and Woodside presented a mathematical model for the

"basic case" of aquifer decontamination by pumping. That is,

they developed analytical solutions for a single extraction well

operating under a constant pumping rate. Their model describes

converging radial transport for various initial distributions of

contaminant. Transport was assumed to be controlled by

advection and dispersion. Thus, this model does not account for

the effects of sorption [Chen and Woodside, 1988; Goltz and

Oxley, 1991:547].

The models currently in existence that describe sorbing

contaminant transport differ primarily on how the sink term is

represented. The two general approaches that are used to model
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this term are by assuming sorption equilibrium and sorption

nonequilibrium [Brusseau and Rao, 1989:34].

SorMtion Eauilibrium. These models relate the amount of

solute sorbed per unit of sorbent to the amount of solute

retained in the aqueous phase [Weber and others, 1991:505].

Three equilibrium models commonly used to describe this

relationship are the linear, Langmuir, and Freundlich models.

The most common and simplest model to use to simulate

sorbing solute transport assumes an equilibrium, reversible, and

linear relationship between contaminant in the sorbed and the

aqueous phase [Goltz and Oxley, 1991:548; Weber and others,

1991:505]. The assumptions in this simple model are known as

the local equilibrium assumptions (LEA). This implies that the

accumulation of solute by the sorbent is directly proportional

to the solution phase concentration. Mathematically, this

assumption is represented by S = Kd C , where Kd is the

distribution coefficient [12 / M] [Weber and others, 1991:505].

This distribution coefficient describes the distribution of

contaminants between aquifer solids and the groundwater. The

value of Kd is dependent upon the characteristics of both the

contaminant and the aquifer material with the hydrophobicity of

the contaminant and the amount of soil organic carbon playing

important roles in determining the magnitude of Kd

[Environmental Protection Agency 540/S-92/016, 1993]. If we

assume only a fraction, 0, of the total aquifer porosity is

mobile, so .= 0 where 0 m represents the mobile region
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porosity, we may define C'(r, t) as the solute concentration in

the mobile region [M / 1], V, as the mobile region seepage

velocity [L / T], and D. as the mobile region dispersion

coefficient [0 / T]. Substituting the expression

S = Kd CQ(r,t) into the sink term of Equation (2.1) produces

aC' (r, t)_ Dn a2C,(r,t) V. (r) aC' r, t)

SR. a2 Rm Jr

where Rm is the mobile region retardation factor [unitless]

where Rm = I + (p Kd) / 0m This LEA model (linear,

equilibrium) has been found to describe sorption accurately

under certain conditions, most appropriately at very low solute

concentrations and for solids of low sorption potential and low

flow [Weber and others, 1991:505]. According to Brusseau and

Rao,

In order for the LEA to be valid, the rate of the
sorption process must be fast relative to the other
processes affecting solute concentration (e.g.,
advection, hydrodynamic dispersion) so that
equilibrium may be established between the sorbent
and the pore fluid. Initially, it was thought that,
because of the generally slow movement of water in
the subsurface, equilibrium conditions should prevail
and, therefore, the LEA would be valid. Detailed
laboratory and field investigations, however, have
revealed that, in many cases, this assumption is
invalid. [Brusseau and Rao, 1989:41]

When the LEA is justified, the mathematics of sorbing

contaminant transport is greatly simplified [Weber and others,

1991:505].
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The Langmuir model, a nonlinear model, was originally

developed for the case where sorption leads to the deposition of

a single layer of solute molecules on the surface of a sorbent.

The assumptions governing this model are: (1) the energy of

sorption for each molecule is the same and independent of

surface coverage, and (2) sorption occurs only on localized

sites and involves no interactions between sorbed molecules

[Weber and others, 1991:505].

The most widely used nonlinear sorption equilibrium model is

the Freundlich model [Weber and others, 1991:506]. This model

has been applied to simulate sorption on heterogeneous surfaces.

Weber and others indicate that the Langmuir and Freundlich

models are equivalent when describing nonlinear sorption over

moderate ranges of solution concentrations; however, major

differences exist between the models over wide ranges and high

levels of concentration [Weber and others, 1991:506].

Sogrtion Nongamuii•br:ium. It has been proposed that a rate-

limited sorption process is responsible for the concentration

tailing that has been observed in many laboratory and field

observations [Goltz and Oxley, 1991:547; Keely and others,

1987:91; Mackay and Cherry, 1989:630]. In the literature, two

approaches have been used to model these sorption kinetics--

chemical and physical [Brusseau and Rao, 1989:43; Valocchi,

1986:1694]. That is, sorption nonequilibrium is assumed to be

due to either a slow chemical or physical mechanism. In this

section both mechanisms are discussed; however, the primary
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emphasis of this research is on physical sorption

nonequilibrium.

•amUXLL. These models assume that sorption

nonequilibrium results from a rate-limited sorption reaction at

the soil-solution interface [Valocchi, 1986:1694; Brusseau and

Rao, 1989:43]. Valocchi presented a model describing converging

radial transport of a sorbing contaminant. Valocchi's model

assumed a chemical rate-limited sorption reaction described by a

first-order rate law [Valocchi, 1986].

•A. The tailing phenomenon has been

successfully modeled by dividing the porous medium into regions

of mobile and immobile water and modeling advective/dispersive

solute transport in the mobile region (Equation (2.1)) with an

expression to describe the diffusional transfer of contaminant

between the two regions [Goltz and Roberts, 1986:1139; Goltz and

Roberts, 1988:40; Goltz and Oxley, 1991:549]. With these

models, advective/dispersive solute transport is assumed to

occur only in the mobile region and snluf tr;n5---t in the

immobile region is assumed to occur only by diffusion. The

solute transport between the two regions causes the immobile

region to act as a sink or source. Consequently, nonequilibrium

sorption is rate-limited due to the slow transfer of solute

between the two regions [Valocchi, 1986:1694; Brusseau and Rao,

1989:45]. Mathematically, the transport of a single sorbing

solute in a radially flowing aquifer in a porous medium with
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immobile water regions may be written as [Goltz and Oxley,

1991: 548]

aC$* (r, t) D. a 2C'C(r, t) Vm(r) aC$.(r, t) 0 ,R. aC' (r, t)

at Rm 02 R. O 0mRm at

where C' (r,t) is volume-averaged immobile region solute

concentration [M / 12], R. is the immobile region retardation

factor [unitless], 0 m = 0 is the mobile region wdter content

[unitless], and Or = 0 - 0. is the immobile region water

content (unitless]. This expression assumes that sorption onto

the solids is linear and reversible, with the effect of sorption

incorporated into Rm and R,, where Rm = I + (p f Kd) / Om I

Ri = I+ [p(! -f)Kd]J/0n , where f is the fraction of

sorption sites adjacent to regions of mobile water [Goltz and

Roberts, 1988:40].

Various models have been proposed to describe the transfer

of solute between the mobile and immobile regions. The two most

common models found in the literature are first-order rate and

Fickian diffusion [Goltz and Roberts, 1986:1139; Goltz and

Oxley, 1991:548-549; Brusseau and Rao, 1989:46-47].

Firzt-OQdAr Rate. These models assume that solute

transfer between the mobile and immobile regions can be

described by a first-order rate expression [Goltz and Oxley,

1991:5481:
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aC (r, t)
- (XR [C'(r, t) - C'(r, t)] (2.4)at 0ir R ý M

where c' [1 / T] is a first-order rate constant The physical

interpretation of Equation (2.4) is based on the assumption that

solute transfer is a function of the solute concentration

difference between the mobile and immobile regions. This model

also assumes that the immobile region is perfectly mixed; thus,

the local concentration at all points within the immobile region

is the same as the volume-averaged immobile region solute

concentration (C ) [Goltz and Oxley, 1991:548]. This

assumption is in contrast to physical diffusion models where a

concentration gradient exists. The combination of Equations

(2.3) and (2.4) are the governing equations describing two-

region first-order sorbing solute transport.

Nkedi-Kizza and others [1984] have shown that the Valocchi's

first-order chemical expression is eciuivalent to physical

nonequilibrium models. In other words, Nkedi-Kizza and others

have suggested that the difference between physical first-order

rate diffusion controlled adsorption and two-site chemical

kinetic adsorption, such as Valocchi's [1986], are

mathematically equivalent when describing ion exchange during

transport through aggregated sorbing media. On a macroscopic

level, both models generate the same total concentration

distribution in the system [Nkedi-Kizza and others, 1984:1129].
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Fiekian Diffupion. The transfer of solute between

the two regions may be assumed to be governed by Fickian (Fick's

second law) diffusion of solute within immobile regions of

specified geometry [Goltz and Oxley, 1991:548-549]. This solute

transfer mechanism requires the presence of a concentration

gradient. As such, the dependent variable in Equation (2.3),

CA, represents a volume-averaged solute concentration within

the immobile region [Goltz and Roberts, 1986:1140]. C'(r,t) is

defined by [Goltz and Oxley, 1991:548]

C (r, t) = aQ z'-' C(r, z, t)dz (2.5)

where C'(r,z,t) is the local concentration at points within the

immobile region [M / 12], = 1,2, 3 for rectangular (layered),

cylindrical, and spherical immobile region geometry,

respectively, a is the immobile region radius or half width [L],

and Z is the coordinate within the immobile region [n].

Mathematically, Fick's second law of diffusion, describing

contaminant transport within the immobile region, is

RdC(r, z, 0 D (2.6)

where D' is the immobile region solute diffusion coefficient

Figure 2.3 shows an idealized conceptualization of an

aquifer remediation by pumping where the transfer of solute
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between mobile and immobile regions may be affected by first-

order rate or Fickian diffusion rate-limiting mechanisms [Goltz

and Oxley, 1991:549].
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Figure 2.3. Conceptualization of Aquifer Remediation, Where
Contaminant Transfer May Be Affected by Rate-
Limiting Mechanisms [Goltz and Oxley, 19911

In summary, the differential equations that govern dissolved

sorbing solute transport consist of Equation (2.3) (with the

last term not present) for the local equilibrium assumption,

Equations (2.3) and (2.4) for the two-region first-order rate
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assumption, and Equations (2.3), (2.5), and (2.6) for the

diffusion assumptions.

Pulsmd UPMumin

As previously mentioned, pump and treat is the most commonly

used technology for remediating contaminated aquifers.

"Approximately 68% of Superfund Records of Decision (RODs)

select pumping and treating as the final remedy to achieve

aquifer remediation" [Travis and Doty, 1990:1465]. In fact, pump

and treat technology is the preferred method to restore

contaminated aquifers to drinking water quality [Olsen and

Kavanau,,i, 1993:42]. The literature reviewed has, for the most

part, criticized pump and treat technology primarily due to its

ineffectiveness in achieving health-based cleanup standards

coupled with extended periods of cleanup duration and high cost.

The most significant literature reviewed was an EPA study

involving 19 sites where pump and treat remediation had been

ongoing for up to 10 years [Environmental Protection Agency

540/2-89/054, 1989]. This study revealed

Of the 19 sites studied in detail, 13 had aquifer
restoration as their primary goal, and only 1 has
been successful so far. Several of the other systems
show promise of eventual aquifer restoration, but
typically progress toward this goal is behind
schedule. Concentrations often decline rapidly when
the extraction system is first turned on, but after
the initial decrease continued reductions are usually
slower than expected. [Environmental Protection
Agency 540/2-89/054, 1989]
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The EPA further indicated that although significant removal of

contaminant mass was achieved, the concentration levels

remaining in the aquifer were generally above health-based

standards or site-specific cleanup objectives. As a result, the

systems had been operating longer than the predicted time

required for cleanup [Environmental Protection Agency 540/2-

89/054, 1989:E-l-E-3, 2-13].

The previous section discussed how rate-limited

sorption/desorption tends to slow the removal of contaminants

from an aquifer as the groundwater is pumped. In turn, pump and

treat remediation is often rendered ineffective. Therefore,

there is great interest in evaluating alternative pumping

schemes that can account for rate-limited sorption/desorption.

One proposed approach is pulsed pumping. Under a pulsed pumping

scheme, pumps are shut off for periods of time so that slow

desorption would occur. When the pumps are turned on again,

higher concentrations would be removed [Goltz, 1991:25; Keely

and others, 1987; Borden and Kao, 1992:34; Mackay and Cherry,

1989:633; Haley and others, 1991:124; Environmental Protection

Agency 540/2-89/054, 1989]. It has been suggested that this

cycling of extraction wells on and off in 'active' and 'resting'

phases may remove the minimum volume of contaminated

groundwater, at the maximum possible concentration, for the most

efficient treatment (Figure 2.4) [Keely and others, 1987:94-99].
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Figure 2.4. Potential Effluent Concentrations for Pulsed
Pumping Remediation [Keely and others, 1987]

The literature reviewed has identified sources that

qualitatively discuss pulsed pumping as a pump and treat

enhancer; however, the only mathematical analysis incorporating

pulsed pumping with the advection/dispersion equation is an

unpublished document by Carlson and others [Carlson and others,

19931.

Carlson and others mathematically derived the solutions in

the Laplace domain for contaminant concentration for the cases

of linear equilibrium, two-region first-order rate, and Fickian

diffusion. Carlson and others research extends the work of

Goltz and Oxley [1991] in that their derivation takes into

account conditions when the pump is on and when the pump is off,

whereas Goltz and Oxley's solutions required the pump to be

continuously on. Unfortunately, Carlson and others did not
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numerically evaluate the Laplace domain solution nor convert it

back to the time domain.

Groundwater extraction or pump and treat is the most

commonly used remediation technology for aquifer

decontamination. However, it has been criticized for its

inability to attain health-based cleanup standards, meet

projected timelines, and stay within budget. The literature

indicates that part of the limitations of pump and treat are due

to the various processes occurring in an aquifer. Understanding

the physical and chemical processes which dictate the transport,

fate, and removal of contaminants in groundwater is essential in

designing and implementing more effective and efficient

remediation systems at IRP hazardous waste sites. Mathematical

models have proven to be excellent tools for representing the

effects of the various processes--advection, dispersion,

sorption, and diffusion--that can occur simultaneously in an

aquifer and affect the transport and concentration of

pollutants.

The literature search revealed three commonly used sorbing

solute transport models: linear equilibrium, two-region first-

order rate, and Fickian diffusion. The significant difference

among these models is the underlying assumptions used in their

development. The linear equilibrium model assumes an

instantaneous equilibrium between the aqueous and sorbed

contaminant phases, whereas the two-region first-order rate and
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the Fickian diffusion models are based on the premise that a

nonequilibrium condition exists, and solute transport is rate-

limited due to the transfer of the contaminant between regions

of mobile and immobile water. The appropriateness of any one of

these models is dependent upon actual site conditions. In fact,

rate-limited sorption/desorption has been studied by several

researchers who propose that this phenomenon is responsible for

the 'tailing' and 'rebound' that have been observed in numerous

field and laboratory studies and one 'culprit' responsible for

the ineffectiveness of pump and treat systems. As a result,

pump and treat enhancers which account for this behavior, such

as pulsed pumpin-> are being investigated.

The literature reviewed has shown that the only significant

attempt to model a pulsed pumping scheme under conditions of

rate-limited sorption/desorption was the research proposed by

Carlson and others. The literature clearly shows a need for

continued research in this area. Further efforts are needed to

numerically evaluate their solutions.

This thesis will extend Carlson and others work by

developing a source code based on their solutions. It is

intended that this research may provide IRP decision makers with

a better understanding of the physics that can occur in an

aquifer, and help them validate more complex numerical models

that are used to predict the level of cleanup required, duration

of cleanup efforts, and the cost associated with aquifer

remediation.
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The primary objective of this research is to develop a

computer model describing contaminant transport by means of

radial advection, dispersion, and sorption in an aquifer

undergoing pulsed pumping operations. Since this research

extends the work of Goltz and Oxley [1991] and Carlson and

others [1993], the equations, solutions, notation, and source

code will be based on the expressions of sorption presented in

their respective papers.

In order to establish the basis of the equation set, model

assumptions and aquifer characteristics are reviewed. Then, the

governing equations and their solutions, which are used to

develop the source code, are presented.

M•dl Asamtiona and Aquifer Cha-antritica

As stated in Chapter I, in order to model contaminant

transport analytically, model equations must be simple. The

simplifying assumptions used in this research represent an

'idealized' scenario.

One key assumption used to set up the model was the

assumption that contaminant transport is described by steady,

uniform, converging radial flow resulting from advection due to

the extraction well. Thus, transport due to the natural

groundwater gradient is assumed negligible. Coupled with this
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assumption, the drawdown of the aquifer water table due 4-o the

pumping is also considered negligible.

To take advantage of radial symmetry, we assumed that a

single, fully penetrating extraction well is in operation placed

at the center of a cylindrically symmetrical contaminated

region. In addition, the initial contamination distribution was

also assumed to be radially symmetric.

Another significant assumption used to set up the model is a

single, infinite, homogeneous, and unconfined aquifer.

Furthermore, the aquifer was considered to be of constant

thickness and bounded by a horizontal aquitard with no seepage.

In addition to the assumptions listed above, model

development was based on the concept of physical sorption

nonequilibrium as discussed in Chapter II. Therefore, to

understand the formulation of the model, it is necessary to

review this concept. Recall that in Chapter II, we discussed

how solute transfer can be modeled by dividing the porous medium

into regions of mobile and immobile water. Advective and

dispersive solute transport occurs in the mobile region, and an

additional term is used to describe the diffusional transfer of

contaminant between the two regions [Goltz and Roberts,

1986:1139; Goltz and Roberts, 1988:40; Goltz and Oxley,

1991:549]. The transfer of solute between mobile and immobile

water may be assumed to be governed by either Fickian diffusion

of solute within immobile regions of layered, cylindrical, and

spherical geometry or by a first-order rate expression [Goltz
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and Oxley, 1991:548-5491. Goltz and Oxley presented a

conceptual i zat ion of mobile and immobile water regions in an

aquifer where contaminant transfer may be affected by Fickian

diffusion or a first-order rate process (Figure 2.3).

If we combine the simplifying assumptions and the concept of

physical nonequilibrium, we can now describe the aquifer

characteristics associated with formulating the model.

Consider an extraction well of radius r,, [L] pumping at a

rate Q. [ 12 / Tj placed at the center of a cylindrically

symmetric contaminated region of radius r. (L] in an aquifer of

constant thickness b (L]. In this contaminated region assume

there exists mobile and immobile water regions. General

properties associated within the mobile region consists of the

mobile region water content, 0. (dimensionless], mobile

retardation factor, R. [dimensionless], and longitudinal

dispersivity, a, [L]. Immobile water region properties consists

of the immobile region water content, 0im [dimensionless],

immobile retardation factor, Rim (dimensionless], and the

immobile region solute diffusion coefficient, D'C [12 / T]. If

the transfer of solute between the two regions is assumed to be

governed by Fickian diffusion, then another property associated

with the immobile region is the radius of the spherical or

cylindrical regions or half width of the layered region, a (L].

Initially in the contaminated region there exists some

maximum concentration in the mobile and immobile regions, C.'

[M / 12]. If we define the initial solute concentration
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distribution in the mobile region as F,(r) [M / 12], and the

volume-averaged initial solute concentration in the immobile

region as Fi(r) [M / 12], then at a later time, t (T], we now

define the mobile region solute concentration as CQ(r, t)

[M I 1] and the volume-averaged immobile region solute

concentration as C'(r,t) [M / 12

In the case where the immobile region is geometry dependent

(Fickian diffusion), initially there exists some local solute

concentration at points within this region, F.(r, z) [M / V].

This concentration is not only a function of the radial

distance, r [L], but also its radial position within the

immobile region, Z [h]. As time progresses, we define the local

solute concentration at points within the immobile region as

Ca(r,z,t) [M / 12].

Governing Equations and Solutions

Chapter II introduced the theoretical development of the

differential equations for sorbing solute transport. This

section presents the governing equations and solutions for

sorbing solute transport for conditions when an extraction well

is on and when an extraction well is off. The model equations

allow for arbitrary initial conditions and are developed for the

following sorption assumptions: linear equilibrium, rate-limited

modeled by a two-region first-order rate process, and rate-

limited due to Fickian diffusion of the contaminant through

immobile water regions of layered, cylindrical, and spherical
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geometry. A more detailed mathematical analysis can be found at

Appendix A and a list of the variables or notation used in this

thesis on page viii.

Mndel rorlation: Xxt~raoion Well O. As presented in

Chapter II, the expression governing contaminant transport

within the mobile region of a homogenous, radially flowing

aquifer is

WC'(r,t) D. a2C' (r,t) 0 V (r) aC' (r, t) O, R,= WC (r, t) (3.1)

it Rm (2 Rm Or 0zRm ct

for r. < r < r. and t > 0 and C'(r,t) is defined by [Goltz and

Oxley, 1991:548]

Ci(r, t) = a z'-'C (r, z, t)dz (3.2)

for r, < r < r. and t >0 and 0< z < a. Given an aquifer of

constant thickness, b [L], and an extraction well pumping at a

rate Q, [L / T], then the radial velocity is

Vm(r) = Q. (3.3)2 ntbOmr

Assuming that the mobile region dispersion coefficient, Dm

[L2 I T], is given by

D.(r) = a, IVm(r)I (3.4)
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and that the mobile region molecular diffusion coefficient,

D' << D., and defining the dimensionless variables as

r (3.5)
al

2T -bORa 2  (3.6)

C'0

Ci= X, T -C' (r, t)C,(X T) inc" (3.8)
0

and the dimensionless constant

Oi 0 RIM (3.9)8.R
OmRm

where X is the dimensionless radial distance, T is the

dimensionless time, Cm(X,T) is the dimensionless mobile region

solute concentration, C• (X,T) is the dimensionless volume-

averaged immobile region solute concentration, then Equation

(3.1) can be rewritten in dimensionless form as

aCm (X, T) _ I 2 Cm (X, T) I Cm (X, T) aC. (X, T)
x+ x x(3.)
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for X. < X < X. where X, is the nondimensionalized well radius

and X, = r, / a,, and X. is the nondimensionalized contaminated

area radius and X. = r. / a, for T > 0.

The use of the mobile retardation factor, R., and immobile

retardation factor, R., is based on the assumption that there

is an instantaneous equilibration between the aqueous and sorbed

contaminant within the mobile and immobile regions, whereas the

sorption rate limitation is due to the slow diffusive release of

solute between the two regions [Goltz and Oxley, 1991:548].

The third term on the right-hand side of Equations (3.1) and

(3.10) represents the accumulation of the contaminant within

immobile regions (Goltz and Oxley, 1991:548]. As previously

discussed, this term can be modeled assuming that immobile

regions do not exist (local equilibrium), or that two region

transfer of solute can be described by a first-order rate

expression, or that Fickian diffusion governs the transfer of

solute within immobile regions of layerea, cylindrical, and

spherical geometry [Goltz and Oxley, 1991:548-549].

The simplest model used assumes that contaminant transport

is through the mobile region only. Sorption is instantaneous.

This model, commonly referred to as the local equilibrium

assumption, assumes P = 0 which implies all the water is

mobile and therefore it does not account for immobile water

regions [Goltz and Oxley, 1991:548].
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Another assumption often made is that the transfer of solute

between the mobile and immobile region can be described using a

first-order rate expression:

aC' (r, t) a'~C~ t)- a [C'(r, t) - C'(r, t)] (3.11)
at OiiRimi

where X is a first-order rate constant [TV]. Defining a

dimensionless first-order rate constant a as

a 2i•bal 2

a = (3.12)

and using Equations (3.5) through (3.8) gives the expression

aC (XT) = a[Cm(X,T) - C (X,T)] (3.13)

aT

This model assumes that the immobile region is perfectly mixed;

thus, the local concentration at all points within the immob'ile

region is the same as the volume-averaged immobile region solute

concentration [Goltz and Oxley, 1991:548].

Finally, it is often assumed that the transfer of solute

between the mobile and immobile regions is governed by Fickian

(Fick's second law) diffusion within immobile regions of

specified geometry [Goltz and Oxley, 1991:548-549].

Mathematically, Fick's second law of clffusion describing

contaminant transport within the immobile region is
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Rm (r,z,t) - D a C' (r, z, t) (3.14)at z•-' U z- az.

where 0 < z < a. When U = 1 diffusion is assumed to occur

through a rectangular or layered immobile region; when ) = 2,

diffusion is assumed to occur through a cylindrical immobile

region; and when v = 3 diffusion is assumed to occur through

a spherical immobile region [Goltz and Oxley, 1991:549; Goltz

and Roberts, 1987]. Defining a dimensionless immobile region

solute diffusion coefficient, D., as

D'a 2 2 bdO R.
D,= e 1 miR(3.15)

a 2Q wRi

and the dimensionless immobile region variable, Z, and

dimensionless local solute concentration at points within the

immobile region, C,(X,Z,T), as

z
Z -(3.16)

a

C.(XZ,T) = C'(r,z,t) (3.17)
C'a

changes Equation (3.14) to

aCa(X,Z,T) _ D, (X, ZxT)1  (3.18)a)T Z U-I aZ aZ(31)

for 0 < Z < 1 and Equation (3.8) to
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C (X,T) = Z-' C. (X, Z, T) dZ (3.19)

Having described the aquifer characteristics, model

assumptions, and dimensionless variables, the following initial

and boundary conditions can be formulated for the various

models.

Initial eonditio, . The initial conditions are

C.(X, T = 0) Fm(X) X. < X < X. (3.20)

C (X,T = 0) F (X) X. < X < X. (3.21)

Cm(XT = 0) = Ci(X,T = 0) = 0 X > X. (3.22)

where Fm (X) and Fm (X) are dimensionless arbitrary initial

concentration conditions in the mobile region and immobile

region, respectively. The diffusion models require the

following additional initial conditions tc describe transport

within the immobile regions [Goltz and Oxley, 1991:549-550]:

C,(XZ,T = 0) = F.(XZ) X, < X < X. (3.23)

C.(X,Z,T = 0) = 0 X > X. (3.24)

where F. (X, Z) is the dimensionless arbitrary initial

concentration condition in the immobile region of a certain

geometry. Again, Equations (3.20), (3.21), (3.22), (3.23), and

(3.24) state the initial conditions, which assume contamination
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of mobile and immobile regions at some arbitrary concentration

within a cylindrical region of dimensionless radius X..

BoundarW ConditionL . The outer boundary condition is

derived based on the assumption that the total mass flux irward

at the outer boundary (X = X.) must always be zero, since

initially, there is no contaminant mass at X > X.. That is,

C'(r., t) + ( t) = 0 (3.25)

using Equations (3.5) and (3.6) changes this expressior .nto

dimensionless form:

Cm(X., T) + --- (X., T) = 0 (3.26)ax

The boundary condition at the well radius is based on the

assumption that at any time, the concentration inside the well

bore is equal to that entering the well from surrounding media

[Goltz and Oxley, 1991:549]. This implies a zero concentration

gradient at the interface between the well and its immediate

adjacent aquifer. Thus,

ac' (r"' t) = 0 (3.27)

Again, using Equations (3.5) and (3.6) changes this expression

into dimensionless form:
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(X.,T) = 0 (3.28)

The diffusion models require additional boundary conditions to

describe transport within the immobile regions of certain

geometry. We assume that the concentration gradient within an

immobile region of certain geometry is zero at the center due to

radial symmetry and is equal to the mobile region concentration

at its outer boundary. Therefore,

ac'-Z (r, z = 0, t) = 0 r < r (3.29)

C'(r,z = 1,t) = C'(r,t) 0 r < r (3.30)

or in dimensionless form, using Equation (3.17), gives us

c (X, Z = 0, T) = 0 X" < X (3.31)

C,(X,Z = 1,T) = Cm(XT) X. < X (3.32)

Laplace TransAorm. In this section we introduce a

mathematical technique that is often used in the solution of

boundary-value problems. This technique is known as the Laplace

transform, which converts a boundary-value problem involving a

linear differential equation as a function of time into an

algebraic problem involving the Laplace transform variable S

[Ross, 1980:427]. Ross defines the Laplace transform by

F(s) = e" e f(t)dt (3.33)
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for all values of S for which the integral exists, where f is a

real-valued function of the real variable t, defined for t > 0

and S is a variable that is assumed to be real [Ross, 1980:427).

The function F defined by the integral is called the Laplace

transform of the function f. The Laplace transform F of f is

denoted by L{f} and F(s) by Z{f(t)J [Ross, 1980:427].

One of the basic properties of the Laplace transform used in

developing the model equations is the Laplace transform of the

derivative of f. That is, if f is a real function that is

continuous for t Ž 0 and of exponential order ec', and f', the

derivative of f, is piecewise continuous in every finite closed

interval 0 • t ! b then Z{f'(t)} exists for S > Cc [Ross,

1980:435]. Thus,

S= s L{f(t)} - f(0) (3.34)

La4lace Solution. In this section we present the

general Laplace solution for when an extraction well is on.

Details of the derivation can be found at Appendix A.

Taking the Laplace transform of Equation (3.10) together

with the appropriate conditions for the various models, yields

- + X y X Cm = F(X, s) (3.35)

where the overbar indicates the transformed function and y and

F(X, s) are given for the various models as follows.

3-13



Local Equilibrium Model (LEA):

Y= S (3.36)

F(X,s) = -XF.(X) (3.37)

First-Order Rate Model:

y= sI + +•a) (3.38)

F(X, s) = -X(F (X) + PF• (X) (3.39)

Layered Diffusion:

) COsinh o (3.40)

F(X, s) = X[Fm (X) + p J'cosh(,A) F. (X, 4)d4 (3.41)

where 0O = (s / De)1/2

Cylindrical Diffusion:

ly = S+ 2 I (3.42)

F(X, s) = -X[Fm(X) + 2p JIo(O)Fa(Xi )d4] (3.43)
3 o1 0 4 )
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where (0 = (s / D.)'/ 2  , and 10 and I, denote the modified Bessel

functions of the first kind of order zero and one, respectively.

Spherical Diffusion:

-- -+ 30 1 (3.44)L 0io ((0

F(X, s) = XF,, (X) + i3(--(X,- (3.45)
1o (0)) 0 4 o F

where w = (s / D.)" 2  , and i0 and i1 denote the modified

spherical Bessel functions of the first kind of order zero and

one, respectively.

Green'n I'unetion. Now assume that Equation (3.35)

has a solution of the form

-- XI

Cm(X,S) = *(X,s)e 2  (3.46)

Substituting Equation (3.46) into Equation (3.35) yields

- y, + 4 F(X, s) (3.47)
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and upon letting y = y3[X + (1 / 4y)] and

4 (y, s) = M(X, s) = 0 (y- y - I / (4y), s ,Equation (3.35)

becomes

d 2 ,-2/3 -[ 1 S

•=i , -exp [ y y , y Y 4(y,S)dy 24 4

(3.48)

for y, < y < y. where (D is now a function of y and s. If we

also substitute Equation (3.46), and use the above definitions

for y = y. , y = y. , into Equations (3.26) and (3.28) we

get the boundary conditions

l1, dOb-D(y,) + y3 _ (y .,) = 0 (3.49)

2 dy

I d4D y.) = 0 (3.50)
2 dy

It is well known that Equation (3.48) has a solution of the

form [Ritger and Rose, 1968]

4)(y, s) = J" g(y, T1, s) .(TI, s) dTl (3.51)

where g(y, ,s) is the Green's function given by
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•(Y) (D)2 (TO)

w[J , 0210() Y < 11 - Y.
g(Y, n, s) = (3.52)14), (r) c1

2 (y)WI[4T,4D2 ](I() 
Y, < T)I - Y

where 0I1 satisfies Equations (3.48) and (3.49), 02 satisfies

Equations (3.48) and (3.50), W[ 1),4) 2](I1) is the Wronskian of

41 and 02 If we define the following operators, G and H, as

G[Ai](y ) = -] Ai (y,,) + 7'd i( .)( .3

2 dy

3 dAi
G[Ai](y,) = -- i(y- -y (+,Y ) (3.55)

2 dy

H[Ai](y,) I = Bi(y,,) + 'y-y, 3.5

SdBi
H[Bi](y.) = -Bi(y) (y.+ (3.56)

2 dy

where Ai and Bi are Airy and Bairy functions, respectively,

then,

4 1,(y) = G[Bi](y.,)Ai(y) - G[Ai](y,,)Bi(y) (3.57)

0 2 (y) = H[Bi](y.)Ai(y) - H[Ai](y.)Bi(y) (3.58)
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and the value of the Wronskian is

2 G(Ai](y,) H[Ai](y.)i 1 (3.59)
W(, 2 ](Y) ]y.) H[Bi](y.) x

Substituting Equations (3.57), (3.58), and (3.59) into Equation

(3.52) yields

x[G[Bi](y.)Ai(y) - G[Ai](y.)Bi(y)][H[Bi](y. )Ai(-q) - H[Ai)(y. )Bi(,)]
G(Ai](y, )H[Bi](y.) - G[BiJ(y, )H[Ai](y.)

g(y, 11) =

1 _I G[Bi](y.)Ai(1T) - G[Ai](y.)Bi(TI)][H[Bi](y.)Ai(y) - H[Ai](y.)Bi(y)]

G[Ai](y,)H[Bi](y.) - G[Bi](y.)H[Ai](y.)

(3.60)

where the top expression is defined for the interval y < 11 _< y.

and the bottom expression is defined for the interval
I

Y, 5 11 < y. Since y = 9y[X + (1I 4y)] then

T1 = Y +3 dl = y' d4 (3.61)

[ 4j ly

Thus, Equation (3.51) becomes

ix. 1 [ 1 + +/ 1 Y dý
V(X) = g + -y + s4y3%+ 4y s4y

(3.62)
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or alternatively, using C.(X,s) =(X,s)e 2 from Equation

(3.46j

C (X, s) = e gY[X + 4 3  + (, S) d

(3.63)

If we define

b(X, ,s) = g (Y3x + 4-], 'Y3 + + , s (3.64)

then
1 I~

Cm(X, s) = exJ b(X, , s) ' 3 e 2 ' F(, s)dý (3.65)

Substituting in the constructed Green's function from Equation

(3.60) gives us

3-19



Cm(, s = G[Ai](y.)H(Bi](y.) G(Bi](y.)H[Ai](y.)}

-G[Bi](y.)H[Ai](y. )Bi[Ty +4 ~fjx~i Y e(2+ (4, S)d4

+GAi(y H[iJy.)I[Y(X + )LK]Jxx~i[yl( + ]etf(4, s)dý

-G[Ai](y.,)H[Bi](y.)Bi[Y3( +y 4y]f4~(

+G[Ai](y,.)H[Ai](y.)Bi y3(x + +ji B~i[,yl(4 +I eitf(,sd

-G[Bi](y,,)H[Ai](y.)Ai y3 x + Ixj B[,y3 + e' , s)d4}

4(3.66

+G[Bi](y,)H[Bi](y.Ai y x +-'2]x0 i-,ý+sd



Modal Fomilation: Erztract-ion Wll Off. If we now consider

turning off the extraction well (Qw = 0) after a certain period

of time, say T, then the mobile region dispersion coefficient,

Dm = 0 (Equation (3.1)), and the molecular diffusion

coefficient, D', becomes the dominant transport mechanism. As a

result, Equation (3.1) becomes

WC'(r,t) - D' I D r _C' (r,t)_ W' _(r,_ t)t r r r)irCnt (3.67)

If we define the dimensionless variables

r D:gRma D" RX (3.68)
a R

T = R 2 (3.69)

then Equation (3.67) becomes

WC (X, T) _ 
2C, (X X, ICm(X, T) W., (X,T)+ (3.70)

)T aX 2  aX X aT

Notice that this X and T are different from those defined in

Equations (3.5) and (3.6). Similarly, if we define

z
z = - (3.71)

a
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which is the same as previously defined in Equation (3.16), then

Equation (3.14) becomes

W. a(X, ZT) _ 1 ZU- W. (X, Z,T)1 0 < Z < 1(3.72)
O-Yr z U' azL az JI

To attain a form of the solution when the extraction well is

off, we will assume that the arbitrary initial conditions are of

the same form as the initial conditions when the well is on,

except for two significant differences. First, the initial

conditions are at some later time, T = T , rather than at

time T = 0 This time (T) reflects the contaminant

concentration in the mobile and immobile regions at the time the

extraction well is turned off. Thus, the initial conditions at

T are the terminal conditions for the pump on. Second, the

dimensionless variables, X, X,, X,, and T take on a different

meaning and form from the pump on case. From Equation (3.68) we

have

Xwrw D: R
r.W = ~ (3.73)
a R

X.=r R (3.74)
a D' R

Thus, the form of Equations (3.20), (3.21), (3.22), (3.23), and

(3.24) are applicable as the initial conditions for when an

extraction well is off.
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The boundary condition at the well for the pump on case is

still assumed to be applicable when the pump is off (Equation

(3.28)). That is, we assume that the concentration inside the

well bore is equal to that entering the well from the

surrounding media. Similarly, the boundary conditions within

the immobile regions of layered, cylindrical, and spherical

geometry remain as stated in Equations (3.31) and (3.32).

The outer boundary condition is modified to allow for

leakage of the contaminant, since molecular diffusion is assumed

to be the dominant mechanism responsible for transport. Thus,

we assume that the total mass flux outward at the outer boundary

of the contamination region (r.) is proportional to the amount of

the contaminant mass present in the mobile region.

Mathematically, this boundary condition is represented as

Ec (X.,T C. (XoiT (3.75)

where £ represents the coefficient of leakage [dimensionless] of

the contaminant through the outer boundary. Refer to Appendix A

for the derivation of this boundary condition.

Laplace Solution. As previously discussed, using the

Laplace transform, the general Laplace solution for when an

extraction well is off is derived. Details of the derivation

can be found at Appendix A.

Combining the Laplace transform of Equation (3.70) together

with the appropriate conditions for the various models, yields
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a2 + yC = F(X, S)x xa (3.76)

where the overbar indicates the transformed function and y and

F(X, s) are given for the various models as follows.

Local Equilibrium Model (LEA):

y =s (3.77)

F(X,s) = -F.(X) (3.78)

First-Order Rate Model:

S I + (3.79)

F(X, s) = -*Fm(X) + OaFf. (X) (3.80)

Layered Diffusion:

+ = sinh0)cos (3.81)

F(X, s) =[Fm (X) + I0cosh(g) F. (X, ý)d4 (3.82)

where (0 = (S) 1/2
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Cylindrical Diffusion:

F = + Io(w ) (3.83)

"F(X,s) = -[Fm(X) + i 0(o))--A)F.(X,)< (3.84)

where (0 = (s) 11 2  , and 10 and 1 denote the modified Bessel

functions of the first kind of order zero and one, respectively.

Spherical Diffusion:

S= s + 3P it (0) 1 (3.85)
3 0 io(0)) 1

F(X,s) = -[F,.(X) + 3- 2 i-o(o)F.(X, 4)d4 (3.86)

where (0 = (S)1 1 2  , and i0 and i1 denote the modified spherical

Bessel functions of the first kind of order zero and one,

respectively.

Green's Funatin. As before, we construct a Green's

function by assuming that Equation (3.76) has a solution of the

form

Cm (X, S) = *(X, S) (3.87)
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such that this solution satisfies the differential equation

(Equation (3.76)) and the boundary conditions (Equations (3.28)

and (3.75)). Substituting Equation (3.87) into Equation (3.76)

yields

d 2 0(X, S) 1 doX, s) _ 0(X, s) = F(X, s) (3.88)

dx2 X dX

and upon letting y = YI/ 2 X , and

O(X,s) = 0(y1-/2 y, s) = D(y,s) , Equation (3.88) becomes

d2cb(y, s) + I dcb(y, s) - 4D(y s = 1 (y's) (3.89)

dy2  y dy

for y, < y < y., where Y(y, S) = (y-1/2y, s) and 4 is now a

function of y and s. If we also substitute Equation (3.87), and

use the above definitions for Y = Y. Y = Y. into

Equations (3.28) and (3.75) we get the boundary conditions

d(y"'s) = 0 (3.90)
dy

1 d4
C2y (y,,S) - 4(y, S) = 0 (3.91)

It is well known that Equation (3.89) has a solution of the

form [Ritger and Rose, 1968]

D(y, s) = g(y, r1, s) ,(T], s) di (3.92)
3y-
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where g(y, TI,s) is the Green's function given by

, ( b,](TO Y < TI 5 Y.

g(y, TI, s) = (3.93)
4D 1 (TO) 4(2 (y)

where 4It satisfies Equation (3.89) and (3.90), 02 satisfies

Equation (3.89) and (3.91) and W[I0, 1 4 2 ](D1) is the Wronskian of

4D, and 02 Thus,

0 ,(y,s) = -Ko(y,,) 0o(y) + I'(y,,) Ko(y) (3.94)

(D 2 (yS) = H[K1 , Ko](y.) I0 (y) + G[11, Io](y,) Ko(y) (3.95)

where K0 and 10 are modified Bessel functions of the third kind

order zero and first kind order zero, respectively, and I, is a

Bessel function of the first kind order one and is equal to 1,

and KI is a Bessel function of the third kind order one and is

equal to -K' [Abramowitz and Stegun, 19701. Also, G and H are

operators defined by

I

G[11, 10 ](y.) = Ey2 1• (y.)- o((y.) (3.96)

H[K1 ,K0](y.) = Cy2 K,(y.) + Ko(y.) (3.97)
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and the value of the Wronskian is

W[4), >,1](y) = -[I,(y.)H[Kj,Ko](y.) - KI(y.)G[l, Io](y.)]
Y

(3.96)

Substituting Equations (3.94), (3.95), and (3.98) into Equation

(3.93) yields

T1[K,(y.)I,(y) + I1 (y.)K 0 (y)][H[Kj, Ko](y.)I,(T) + G[I,, I.](y.)K(n1)]

I1 (y.)H[K,, K0 ](y.) - K, (y,)G[I1 , 1.](Y.)
g(y, T, s) =

in[K,(y.)Io(q) + I1(y.)K,(q)][H[K,, Ko](y.)Io(y) + G[1 1, I.](y.)Ko(Y)]
I1,(y.)H[Kl, Ko](y.) - K,(y.)G[I,. I,(y.)

(3.99)

where the top expression is defined for the interval y _< 11 _< y.

and the bottom expression is defined for the interval

Y, :5 T] < y. Since (D(y) = O(X) then

1 1

TI = 7'4; d1j = Y' d4 (3.100)

Thus, Equation (3.89) becomes

(y' S) = J'g Y2X, Y2 ,S i y2 d4 (3.101)
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Since C,(X, s) = 0(y, s) (Equation (3.87)), then

CU(X,s) = Jg y X, y2  F(4 s)d4 (3.102)

If we define

b(X, 4, s) = g (,Y X, y2 4, s (3.103)

then

Cm (X, S) = 4(x , S) y 2 N({, S) d4 (3.104)

Substituting in the constructed Green's function (Equation

(3.99)) gives us
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Cm(,S){I(y.)H[K1,Ko](y.)- K,(yw.)G[, Ii,, ](y.1

{H[Ki, Ko](Y.)IO(y 2X) + G [1,, 10 ](y.)4K0 (y 2X) K, (Y.) )J ej (y y24) )F (, S d

+ HKIK,,(Y.Io (y2X ~ ,~ K 0 ](y2X)]O Ii[ K ) K0 ](Y. )Jx 1 (2 )f ( 4, s) d4

+KIyWIo~y2X) + Iy)Kyix I[, o(. x (,sd

(3.105)
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5. Ana~lysis and Evaluation of Rasults

This chapter presents results using a computer model based

on the analysis developed in Chapter III. First, a discussion

of the numerical techniques and difficulties encountered in

coding the analytical solutions is presented. Then, model

simulations, showing the transport and fate of a contaminant

undergoing pulsed and continuous pumping, are presented for

varying initial conditions. Finally, model verification is

attempted by comparing model results with two existing models

that incorporate rate-limited sorption and desorption.

Numarinal ZEvaluatinn

Because of the complex nature of the Laplace solutions

presented in Chapter III (Equations (3.66) and (3.105)), the

formula translation (FORTRAN) language was used. Being one of

the older scientific computer languages, the FORTRAN language

has the advantage of accessing large mathematical libraries.

Incorporating sophisticated, well-tested functions and routines

from these libraries, the model is able to numerically solve the

Laplace solutions. Specifically, the model uses the Stehfest

algorithm [Stehfest, 1970], Gauss-Quadrature integration [Press

and others, 1992), and the International Mathematical and

Statistical Library (IMSL) function package SFUN [International

Mathematical and Statistical Library, 1989]. For detailed
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information concerning the model's numerical and logical

architecture, refer to the systems level flowchart at Appendix B

and the FORTRAN source code at Appendix C.

Lalarem Irkneralon. As stated in Chapter III, the primary

objective of this research is to develop a working computer

model describing contaminant transport by means of radial

advection, dispersion, and sorption/desorption in an aquifer

undergoing pulsed pumping operations.

As shown in Chapter III, the solutions used to develop the

code are in the Laplace domain. Therefore, the primary purpose

of the model is to numerically invert these analytical Laplace

solutions. The Stehfest algorithm was selected for this purpose

since it was easy to implement and was successfully used in a

previous analytical model [Goltz and Oxley, 1991).

The Stehfest algorithm approximates the inverse of a

function, P(s), according to the approximation equation

In (2) 

(

T i=l T )

where T is the time, N is an even numbered integer variable

affecting the precision, and V. is a weight function defined by

V = (1(+i) 2 k2 (2k)! (4.2)

k=[i2"1 (- 2 k k!-(k - 1)!(i - k)!(2k -
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The even number integer variable N has been shown to offer

maximum precision at a value of 18 for double precision

calculations (Stehfest, 1970]. However, precision is also

affected by function smoothness. Function discontinuities,

sharp fluctuations, or ill-behaved oscillatory behavior can

adversely affect the reliability of the Stehfest approximations

[Stehfest, 1970]. For functions with unknown smoothness

characteristics, Stehfest suggests varying N and comparing

results to determine the optimum value. Since this model's

Laplace domain equations are difficult to characterize in terms

of smoothness, the model was run at various N values to

quantitatively gauge Stehfest precision. The results suggest

that all models converge on a unique limit at N = 18. At

higher N values, rounding errors resulted and produced

inconsistent model calculations. According to Stehfest, more

accuracy should be achieved the greater the N value but

numerical errors can be expected if N becomes too large

[Stehfest, 1970:48].

Gauss-Ouadrature Integration. In addition to numerical

techniques to invert the Laplace solutions, the model needed a

numerical integration technique to solve key integral

expressions (Equations (3.66) and (3.105)). These integral

expressions contained both exponential and exponentially-behaved

functions. Having a characteristic sharp rise near one end-

point, these expressions are sensitive to integration point
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selection. Therefore, a numerical integration method that

optimized point selection was needed.

The Gauss-Quadrature integration technique offers optimum

integration accuracy for a given number of integration points.

Although it is sensitive to function smoothness, it does provide

greater or equivalent accuracy with approximately one-half the

points of other methods. Logically then, Gauss-Quadrature was

selected as the model's numerical integration technique [Press

and others, 1992:140].

QhCbie-Sline Interpolation. Since Gauss-Quadrature requires

the flexibility to select its own integration points, a problem

developed by incorporating arbitrary initial conditions into the

model. Input as discrete points, the initial conditions are

included in several integral expressions. To satisfy Gauss-

Quadrature requirements, these points must emulate a function.

Therefore, an interpolation routine was required.

Recalling that the Stehfest and Gauss-Quadrature algorithms

are sensitive to function smoothness, interpolation smoothness

was deemed necessary. Cubic-spline interpolation was selected

because it offers smoothness in the first derivative and

continuity in the second derivative. With cubic-spline

interpolation, numerical errors due to Gauss-Quadrature

integration and Laplace inversion routines are not aggravated.

N,-mripa DiffiCulties. Underflow and overflow errors

initially posed a significant barrier to evaluating model

solutions. The Bessel functions in the analytic solutions are
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very sensitive to the argument size due to their exponential

nature. Using exponentially scaled IMSL Bessel function

routines, Equations (3.66) and (3.105) were rearranged to

protect against underflow and overflow.

Another difficulty or limitation associated with the model

is the long run-time. Currently, the time to evaluate aquifer

solute concentrations at ten radial locations out from the well,

ten time steps, six immobile region locations, and two pump on

and off cycles, exceeds 24 hours on a 486DX personal computer.

However, the run-tiime does fall to six or seven hours on a DEC

VAX mainframe. These long run-times are due in part to the

high-order requirements of integrating certain integ:and

expressions.

As previously discussed, certain integrand expressions, such

as in Equation (3.99), have a shape heavily influenced by the

modified Bessel function 10. When the Gauss-Quadrature routine

is invoked to evaluate these integrals, high order must be used

to insure that the significant area under the curve is

adequately sampled. Figure 4.1 demonstrates that as the length

of the integration interval rises, the function's exponential

curve moves farther to the right. This characteristic reduces

the number of Gauss-Quadrature qampling points under the

significant region of the curve.

Model Simulations

As previously mentioned, the source code was designed to run

pulsed pumping or continuous pumping simulations based on the
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five assumptions presented in Chapter III and formulated in

Appendix A. To demonstrate the capability of the code, two

simulations were conducted. The first simulation was an

internal comparison between pulsed pumping and continuous

pumping remediation where sorption/desorption was controlled by

diffusion within layered immobile water regions and the initial

concentration distribution is constant throughout the aquifer.

The second simulation was designed to track the migration of an

arbitrary initial concentration profile under continuous pumping

with the same sorption/desorption parameters as in the first

simulation.

Pulsed vsus Conrtinuaus Pu-inI . In this simulation, model

comparisons were made between pulsed pumped and continuous

pumped aquifers. The pulsed pump simulation consisted of

cycling the pump on and off at 100 day intervals for a total

duration of 400 days. The pumping rate was constant for both

pulsed (when on) and continuous pumping, and the layered

diffusion model was assumed. Other input parameters for this

simulation are shown at Table 4.1.

Table 4.1

Input Parameters for the Layered Diffusion Simulation

Q 0 1 De b p f a a, Kd

(m' / d) (M2 / d) (M) (9in / cm') (m) (m) (gmn / an')
1000.0 0.42 0.5 9.936E-6 10.0 1.81 0.4 0.05 0.5 1.48
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The initial mobile and immobile contaminant concentration

distributions were set at 1.0 (dimensionless) throughnit the 56

meter diameter site of contamination and 0.0 for both mobile and

immobile regions outside the site boundaries. In the case of

the pulsed pumping simulation, the terminal conditions for both

the mobile and immobile regions for the current interval became

the initial conditions for each successive interval.

Figures 4.2 and 4.3 show the mobile effluent concentration

profile at all radial locations for the pulsed pump and

continuous pump simulations. However, for purposes of brevity,

our analysis is restricted at the well. Table 4.2 shows the

effluent concentration profile at the well for both the pulsed

and continuous pumping simulations, and Figure 4.4 shows the

graphical representation.

Table 4.2

Mobile Concentration Comparison at the Well

Day Pulsed [Continuous Day Pulsed Continuous
10 .9999 .9999 210 .1728 .0400
20 .9936 .9936 220 .1564 .0394
30 .6750 .6750 230 .0979 .0383
40 .2978 .2978 240 .0576 .0374
50 .1464 .1464 250 .0449 .0364
60 .1045 .1045 260 .0411 .0356
70 .0906 .0906 270 .0392 .0349
80 .0816 .0816 280 .0377 .0342
90 .0738 .0738 290 0364 .0335
100 .0673 .0673 300 .0353 .0329
110 .0932 .0606 310 .0497 .0319
120 .1016 .0580 320 .0553 .0317
130 .1140 .0549 330 .0630 .0310
140 .1272 .0523 340 .0714 .0305
150 .1398 .0500 350 .0797 .0300
160 .1516 .0479 360 .0?7r_ .0295
170 .1625 .0461 370 .0951 .0291
180 .1726 .0445 3£0 .1022 .0287
190 .1822 .0431 390 .1090 .0283
200 .1911 .0418 400 .1156 .0279
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Figure 4.4. Effluent Concentration Profile for Pulsed
Versus Continuous Pumping Comparison at
the Well When Sorption/Desorption
is Controlled by Diffusion Within Layers

As can be seen from Table 4.2 and Figure 4.4, the layered

diffusion model initially shows a high removal of the

contaminant in the mobile region, an early breakthrough after

about 20 days, and eventually a tailing off to a concentration

as low as 0.0673. During the second 100 day interval, a further

decrease in the mobile concentration is seen for the continuous

pump simulation

In the case of pulsed pumping, the pump is turned off during

the second 100 day interval and, as can be seen from Figure 4.4,

the solute concentration begins to rise or 'rebound'. This is

not surprising since this phenomenon has already been observed

by other researchers [Keely and others, 1987:91; Mackay and

Cherry, 1989:633; Travis and Doty, 1990:1465].
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To understand why this rebound phenomenon was occurring and

to see if the model was simulating the physics of this

phenomenon, the model tracked the immobile concentration

profile. Tables 4.3 and 4.4 show the immobile region

concentration profile at the well for both the pulsed and

continuous pumping simulations at 100 days and 200 days,

respectively. At the end of the first 100 day interval (pump

on) the immobile region concentration profile showed that a

significant amount of the contaminant remained in the immobile

regions at all radial locations. Thus, when the pump is turned

off, the contaminant slowly diffused from the immobile regions

into the mobile region accounting for the rebound in

concentration.

Table 4.3

Immobile Region Concentration Comparison
(Pulsed Versus Continuous Pumping at the well - at day 100)

Radial

Distance Pulsed Continuous

0.0 .9998 .9998

0.2 .9987 .9987

0.4 .9858 .9858

0.6 .9055 .9055

0.8 .6212 .6212

1.0 .0673 .0673
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Table 4.4

Immobile Region Concentration Comparison
(Pulsed Versus Continuous Pumping at the well - at day 200)

Radial

Distance Pulsed Continuous

0.0 .9807 .9806

0.2 .9607 .9604

0.4 .8855 .8831

0.6 .7244 .7113

0.8 .4729 .4214

1.0 .1911 .0418

After 200 days, mobile (Table 4.2) and immobile (Table 4.4)

region concentrations are lower in the continuous pumping case.

This indicates that continuous pumping is more effective than

pulsed pumping in removing the contaminant over time.

After 300 days, the immobile contaminant concentrations are

not significantly different between the pulsed pumped and

continuously pumped aquifers (Table 4.5). Continuous pumping

has resulted in the lower residual contaminant level (.0329) but

pulsed pumping yields only a slightly higher residual level

(.0353). These results (Table 4.5) suggest that continuous

pumping offers little tangible advantage oer pulsed pumping

when remediating an aquifer with rate-limited sorption

characteristics.
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In a broader sense, the model shows the insignificant

effects of continuous pumping on immobile region contaminant

release. As a result, the mobile concentration increases with

time due to the rate-limited desorption of contaminant from the

layered immobile water regions. This observation is further

supported at day 400 in the pulsed pumping simulation (Table

4.6). The contaminant rebounds 327% from a level of .0353 to

.1156.

Table 4.5

Immobile Region Concentration Comparison
(Pulsed Versus Continuous Pumping at the well - at day 300)

Radial

Distance Pulsed Continuous

0.0 .9219 .9190

0.2 .8914 .8860

0.4 .7956 .7814

0.6 .6233 .5974

0.8 .3646 .3389

1.0 .0353 .0329
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Table 4.6

Immobile Region Concentration Comparison
(Pulsed Versus Continuous Pumping at the well - at day 400)

Radial

Distance Pulsed Continuous

0.0 .8476 .8391

0.2 .8136 .8032

0.4 .7106 .6956

0.6 .5422 .5201

0.8 .3290 .2898

1.0 .1156 .0279

Table 4.5 shows that at the end of 300 days, the mobile

concentrations for the two simulations were 0.0329 (continuous)

and 0.0353 (pulsed). Thus, the two concentration levels are not

significantly different suggesting that both methods of

remediation are capable of achieving similar levels of cleanup.

Admittedly, this comparison is limited by the fact that pump off

schedules were arbitrarily selected. It is possible that

contaminant removal efficiencies may improve with longer 'pump

off' times to allow more contaminant to desorb into the mobile

water.

Overall, the model simulating continuous pumping is

consistent with field observations - namely, that as pumping

continues over time, large volumes of water are being extracted
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and treated to remove only small quantities of contaminants

[Goltz and Oxley, 1991:547; Olsen and Kavanaugh, 1993:44; Keely

and others, 1987:91; Mackay and Cherry, 1989:630].

Xff:iincy C arison. Model simulations, which show

higher contaminant concentration removed at the well during

pulsed pumping, suggest a pump on/pump off operation scheme may

allow for more efficient contaminant removal in a groundwater

remediation project. Efficiency is defined as the volume of

contaminated water extracted for a fixed amount of contaminant

mass. In order to quantify the comparison between pulsed and

continuous pumping, a measurement of contaminant mass removed

versus volume of water extracted was developed. Figure 4.4

shows the contaminant concentration within the extracted water

at the well for both pulsed and continuous pumping. From this

figure, a contamina ýc mass removal measurement can be easily

derived on a mass per volume basis.

Separating the pulsed and continuous pumping curves, a

contaminant mass measurement is obtained by numerically

integrating each curve over its respective pump on interval

(Figure 4.5). Since this simulation used a pump extraction rate

of 1,000 cubic meters per day, time is converted to volume and

plotted (Figure 4.6).
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Assuming an initial maximum concentration of 1

grams/cubic meter, operating in a pulsed pump mode removes 1,975

grams of contaminant in 200,000 cubic meters of water (Figure

4.6). To remove the equivalent mass of contaminant in a

continuous pump mode, Figure 4.6 shows that approximately

277,500 cubic meters of water would have to be extracted. This

represents an approximate 28 percent efficiency advantage of

pulsed over continuous pumping given the uniform initial

distribution and input parameters in Tablu 4.1.
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The model demonstrates that operating in a pulsed pump

mode provides time for the slow desorption process to release

contaminant to the mobile water, thereby resulting in increased

concentrations of contaminant in the extracted water, thus

permitting higher removal of contaminant mass per volume of

extracted water. By operating in a pulsed pump mode, advantages

may include considerable savings in pumping and waste treatment

costs along with minimizing excess groundwater removal. To an

IRP program manager, this translates directly into dollars saved

by providing the 'biggest bang for the buck'. However, if

maximum contaminant mass removal is the IRP site remediation

objective, then this simulation indicates that pulsed pumpinq

will not remove more mass over time than continuous pumping, and

it appears that pulsed pumping may extend the duration of the

remediation efforts.

Continuous Pumpin. In this simulation, we demonstrate the

flexibility of the model by specifying arbitrary initial

conditions, thus allowing simulations to more realistically

depict an actual contaminated site remediation. During this

simulation, the pump is left on continuously for a total

duration of 100 days. The input aquifer parameters are the same

as those used in the previous simulation (Table 4.1) . The

layered diffusion model is used, and the initial contaminant

concentration distribution in the mobile region is entered as

discrete points as shown at Figure 4.7.
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The immobile region initial contaminant concentration

distribution was set constant at 1.0 (dimensionless) radially

throughout the aquifer (0.2-28.0 meters) and 0.0 at all other

locations.

As can be seen from Figure 4.8, the layered diffusion model

simulates the early breakthrough and long concentration tail at

radial distances 12.6 meters, 15.6 meters, and 18.7 meters where

the initial concentrations were 1.0 and at radial distances 21.8

meters and 24.9 meters where the initial concentrations were

0.75 and 0.5, respectively. Note that at radial distance less

than 9.5 meters, there is a slight increase in the solute

concentration with time. After this increase (which peaks at

various times for the various radial distances), the

breakthrough occurs and subsequently tailing at each of these

locations.
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In order to more clearly see this peaking during the early time

period, we generated the effluent concentration profile for the

first 10 days at all radial locations (Table 4.7) and the

graphical representation (Figure 4.9).

Table 4.7

Mobile Concentration Profile for the First 10 Days

Day Radial distance starting at the well [m]

0.2 • 3.3 6.4 9.5 12.6 15.6 18.7 j 21.9 24.9 28.0

0 .5000 .5000 .5000 .7500 1.000 1.000 1.000 .7500 .5000 .0000
1 .4794 .4955 .6063 .8344 .9710 .9742 .9220 .6862 .4158 .0236
2 .5421 .5786 .7068 .8685 .9430 .9366 .8489 .6192 .3461 .0246
3 .6351 .6700 .7715 .8741 .9131 .8912 .7788 .5526 .2871 .0211
4 .7084 .7342 .8027 .8639 .8799 .8407 .7112 .4884 .2369 .0173
5 .7509 .7677 .8103 .8443 .8427 .7870 .6458 .4277 .1944 .0139
"6 .7678 .7781 .8027 .8183 .8016 .7316 .5828 .3715 .1587 .0111
7 .7824 .7882 .8011 .8032 .7730 .6897 .5336 .3271 .1297 .0074
8 .7878 .7906 .7949 .7860 .7432 .6485 .4873 .2872 .1043 .0051
9 .7865 .7870 .7844 .7656 .7114 .6072 .4433 .2509 .0828 .0036

10 .7802 .7788 .7703 .7427 .6783 .5665 .4019 .2180 .0654 .0027

Given the initial contaminant distribution (Figure 4.7),

this peaking of highly contaminant water is transported inward

toward the well the moment the well is turned on. Since we have

assumed radial flow this sudden change generates this slight

increase and surfaces as time progresses. This behavior appears

to make physical sense and therefore is plausible that this

simulation is depicting the physics that could be occurring in

the aquifer.

Moide VArifiaationi/Comparison

The basis for model verification was to compare this model

with existing models formulated using the same
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sorption/desorption assumptions. In Chapter II we reviewed the

literature related to modeling sorbing solute transport. The

review focused on analytical models describing converging radial

transport and incorporating equilibrium or rate-limited

sorption, with the rate-limitation described by either a first-

order equation, or by Fickian diffusion in immobile regions of

an aquifer. In addition, we searched for any independent

modeling efforts in the area of pulsed pumping.

The literature search uncovered various researchers who have

presented analytical models that met the above criteria. For

purposes of comparison, the analytical model presented by Goltz

and Oxley was used (Goltz and Oxley, 1991]. Their model solves

the same sorption/desorption equation set for the pump on used

in this research. However, their model does not allow for

arbitrary initial conditions or pulsed pumping. Finding no

analytical pulsed pumping models, the literature was searched

for numerical models using the same criteria as above.

A numerical model by Huso was found that used the Finite

Element Method and Finite Difference Method [Huso, 1989] . In

this model, the pump on expression governing contaminant

transport within the mobile region (Equation (3.1)) and Fick's

second law of diffusion (Equation (3.14)) for spherical and

layered immobile region geometry were incorporated. Huso's

model allows for arbitrary initial conditions, multiple radial

locations, and simulates pulsed pumping by using a small pumping

rate. However, Huso's pulsed pumping simulation does not
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explicitly include the governing contaminant transport equation

when the pump is off (Equation (3.67)).

The test consisted of running the Goltz/Oxley model and Huso

model and comparing simulations with simulations of the model

presented in this research. The input parameters presented in

Table 4.1 were used for all three models. With identical input

data, all three models should produce similar results. However,

some deviation will be expected since the analytical models

solve for the mobile concentration for all time simultaneously,

while the numerical model steps forward in time; thus, the

numerical model is subject to compounding errors [Huso, 19891.

Simulation parameters consisted of cycling the pump on and

off at 100 day intervals for a total duration of 400 days. The

initial mobile and immobile contaminant concentration

distribution was set constant at 1.0 throughout the aquifer

(0.2 - 28.0 meters) and 0.0 outside the aquifer (beyond 28

meters).

Figure 4.2 shows the simulation at multiple radial locations

for the model presented in this research operating in a pulsed

pump mode. Because of data and design limitations with the

other two models, the comparison test was conducted at the well

only. Unfortunately, since the Goltz/Oxley model only permits

pump on operation, data only exists for the first 100 days for

that model. In addition, only selected data points in time were

available for Huso's model. Table 4.8 shows the effluent
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concentration profile comparison at the well, and Figure 4.10

shows the graphical representation.

Table 4.8

Layered Mobile Region Comparison Test

Day Goltz Huso Model Day Goltz Huso Model
10 1.001 1.001 .9999 210 - .18 .1728
20 .9937 .9937 .9936 220 - .16 .1564
30 .6750 .6750 .6750 230 - .12 .0979
40 .2978 .2978 .2978 240 - .08 .0576
50 .1463 .1463 .1464 250 - .04 .0449
60 .1045 .1045 .1045 260 - .04 .0412
70 .0906 .0906 .0906 270 - .04 .0392
80 .0816 .0816 .0816 280 - .04 .0377
90 .0739 .0739 .0738 290 - .04 .0364
100 .0673 .0673 .0673 300 - .04 .0353
110 - - .0932 310 - - .0497
120 - - .1016 320 - - .0552
130 - - .1140 330 - - .0630
140 - - .1272 340 - - .0714
150 - .14 .1398 350 - .08 .0797
160 - - .1516 360 - - .0876
170 - - .1625 370 - - .0951
18- - .1726 380 - - .1022
19- - .1822 390 - - .1090
200- .20 .1911 400 - .12 .1156

1.2 --

n --Model

C
0.8
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n
t 0.6
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Figure 4.10. Effluent Concentration Profile Comparison at
the Well When Sorption/Desorption is
Controlled by Diffusion Within Layered
Immobile Regions
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As can be seen from Table 4.8 and Figure 4.10, the model

presented in this thesis tracks very close to the Goltz/Oxley

and Huso models. As Figure 4.10 demonstrates, all models

initially show a high removal of contaminant until tailing

appears around day 50. From this point to day 100, the tail

appears and reaches a residual concentration. At day 100, the

well is turned off and the mobile concentration rises, as

contaminant in the immobile region slowly desorbs into the

mobile region. At day 200, the well is turned on, and again the

breakthrough and tailing is observed. At day 300, the well is

turned off, and expectedly, the mobile concentration rebounds.

At the end of the simulation (day 400), the levels in the

immobile regions are still quite high (Table 4.6) which

indicates only a portion of the total contaminant was removed

during this 400 day simulation.

Although favorable comparison results with both models

during the first 100 days, deviations are apparent with the Huso

model at certain data points. As previously mentioned, one

possible explanation for this deviation is that the numerical

model steps forward in time; thus, the numerical model is

subject to compounding errors. Another possible explanation for

this deviation could be that Huso's simulations are based on a

finite element and finite difference method which approximates

the equation set. Still another possible explanation could be

that the model presented in this thesis uses numerical

4-27



approximations, such as numerical integration, which could

explain the difference in results.
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This concluding chapter draws together the research

presented in the previous chapters. It begins with an overview

of the research effort. Next, it summarizes the findings of

this study, and finally, it lists recommendations for model

improvements and for follow-on research.

The focus of this research was to model the fate and

transport of contaminated groundwater under certain simplifying

assumptions. It was intended that our research would assist

Installation Restoration Program (IRP) managers to estimate the

level and type of aquifer cleaniup effort. As such, the main

thrust of the research was to analytically model contaminant

transport and show how the rate-limited sorption process

influences the fate of contaminants in porous media. With

recent criticisms of pump and treat remediation, primarily due

to its inability to account for rate-limited sorption and

desorption, our research was tailored to account for This

behavior. Specifically, it incorporated one method that has

been proposed to enhance typical pump and treat remediation:

pulsed pumping.

The literature review clearly revealed that research during

the last few decades has contributed to a better understanding

of the transfer of solute in porous media through the mechanisms

5-1



of rate-limited sorption and desorption. There appears to be an

increase in mathematical models focused on contaminant transport

and rate-limited sorption/desorption. However, chere does not

appear to be many computer-based analytical models that

incorporate rate-limited sorption/desorption and none that

include pulsed pumping.

In this research an analytical model was formulated based

upon solutions governing the transport of a contaminant during

aquifer remediation by pulsed pumping. Contaminant transport

was assumed to be affected by radial advection, dispersion, and

sorption/desorption. Sorption was modeled assuming equilibrium

or rate-limited, with the rate-limitation described by either a

first-order equation, or by Fickian diffusion of contaminant

through layered, cylindrical, or spherical immobile water

regions. The model equations were foemulated using an arbitrary

initial distribution of contaminant in both the mobile and

immobile regions and were analytically solved in the Laplace

domain. These analytical solutions were then numerically

inverted and converted back to the time domain.

Summary of Findinan

Simulations were used to demonstrate the capability of the

model. In addition, a comparison of this model's simulations to

other models was conducted with favorable results.

Unfortunately, time constraints precluded a thorough evaluation
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of the model. However, the model simulations that were

conducted revealed the following:

(1) A pulsed pump operation may allow for more efficient

contaminant removal in a groundwater remediation project. The

model demonstrates that operating in a pulsed pump mode provides

time for the slow desorption process to release contaminant to

the mooile water and eventually allows the system to approach

equilibrium.

(2) The pulsed pump simulation showed increased

concentrations of contaminant in the extracted water indicating

a higher removal of contaminant mass per volume of extracted

watei.

(3) The simulation indicates that pulsed pumping does not

accelerate the cleanup time but can achieve approximately the

same concentration levels of contaminant as continuous pumping.

This may result in Fvings in pumping and waste treatment costs.

(4) The model was designed to provide flexibility by

allowing arbitrary initial contaminant concentration

distributions. Unfortunately, model simulations were limited

and a thorough assessment of this aspect of the model still

needs to be accomplished.

(5) A comparison test was conducted with existing models

found in the literature. Goltz and Oxley presented an

analytical model based upon the same sorption/desorption

assumptions used in this research for a continuously operating
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extraction well [Goltz and Oxley, 1991]. Huso presenLed a

numerical model using the same sorption!aesorption assumptions

[Huso, 19892. The model compares favorably with the Goltz/Oxley

and Huso models.

2m29akbtiona

As discussed in Chapter I, the development of an analytical

model requires simplifying assumptions in formulating the

equation sets. Therefore, the primary emphasis for future

research is to relax or eliminate these assumptions. More

specifically, emphasis should be focused in the following areas:

(1) Include drawdown of the aquifer water table as part of

the equation set formulation. This would reflect a more

realistic scenario.

(2) Eliminate the necessity for radial symmetry. That is,

develop a mathematical model that is truly two dimensional or

three dimensional.

(3) Include an arbitrary groundwater velocity field or

hydraulic gradient.

Other model applications could include:

(1) The pumping schedule could be optimized so that a

greater amount of contaminant can desorb from the immobile

region. In this model, the pump off time was arbitrarily

selected.

(2) Extend the capability of the model by including

multiple wells, including injection wells. Again, optimizing
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the number of wells and cycling periods would provide a better

simulation of a real contaminated site.

(3) Add the ability to estimate the contaminant mass

remaining in the aquifer. Knowing this information will show

the efficacy of an aquifer remediation effort.
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Appendicx A: A Green's Function Aproach to

Anal-tical Modeling Aajifer Decontamination by Pulsed Pu12•ing

With Arbitrary Initial Conditions

This appendix presents the theoretical development and

detailed mathematical analysis of the equations and solutions

that govern sorbing solute transport. The derivation uses

arbitrary initial conditions and is developed based on the five

expressions of sorption/desorption (equilibrium, two-region

first-order rate, and Fickian diffusion of rectangular,

cylindrical, and spherical immobile region geometry) for

conditions when an extraction well is on and when an extraction

well is off.

The mathematical representation of the advection and

dispersion that govern dissolved transport of a single

contaminant in saturated, homogeneous porous media with radial

converging flow is

aC' (r,t) 0 1 a aC (r,t) 1 C (r, t)- r(Dm(r) + D) M) Vn(r) (A.1)
rt r L or ar

where D' is the dispersivity [L] of the porous media and D' is

the molecular diffusion coefficient [L! / T]. If we include a

sink term to describe the transfer of contaminant from the

aqueous phase to immobile water regions, and account for the

distribution of contaminants between aquifer solids and the

groundwater (Rm = I + (pKd) 0 0.) , then Equation (A.1) becomes

A-I



aC' (r, t) (r t)aC
- L D r + D ') 'C' t)a~t Rr ar M oh"

(A.2)
V. (r) a)C'. (r, t) 0•=,Rim a9C. (r, t)

R a- OmRm at

f we define

D' = aiVm(r) (A.3)

-- R(A.4)
OmRm

then Equation (A.2) becomes

aC'(r,t) _ -l m[(aiVm(r) + rD,)aC(r,t)]
at Rmr D~r 0

(A.5)
V. (r) tgC" (r, t) a3(C" (r, t)

Rm "r at

or

°aC'(r' t) I a~ mor•[ a Vm (r) + atC' ( r, t)ro"

(A.6)
Vm (r) aC.' (r, t) D C'm (r, t)

R. ar i1 at

If we substitute Equation (A.3) into Equation (A.6)

aC' r, t) _ aC (rt)
ac•(rt) R- [ a, Vn (r) + D') .C-(r,t)

(A.7)

,Vm (r) aC" (r, t) aC' (r, t)

Rm Ar at
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and define

Dm = a, IVm (r)I (A.8)

then Equation (A.7) becomes

aC' .(r, t) =I a [(D,. +D) •C(r, t)

(A.9)
V, (r) aC' (r, t) W'• (r, t)

Rm n P t

where Dm is the mobile region dispersion coefficient [L2 / T].

Equation (A.9) describes the transport of a single sorbing

solute in saturated, homogeneous porous media. Mathematical

modeling of this phenomena often incorporates simplifying

assumptions, depending on whether an extraction well is on or

off.

Model Formulationa Extraction Wall On

In the case where we have an extraction well operating, it

is •ften assumed that the mobile region dispersion coefficient,

Dm, is much greater than the molecular diffusion coefficient,

D'. Thus, D' is considered negligible sufficiently close to

the well where the advective process due to the pump's influence

overwhelms the molecular diffusive process [Valocchi, 1986:1694;

Goltz and Oxley, 1991:548]. When this assumption is made,

Equation (A.9) becomes

A-3



aC' (r t D.aCm (r, t) V. (r) Wm'(r, t) c)C (r, t)

SP(A.10)COt R. 0r R.. r &t

which describes the transport of a single sorbing solute in a

radially flowing aquifer in a porous medium with immobile water

regions [Goltz and Oxley, 1991:548]. The dependent variable in

this equation, C , represents a volume-averaged solute

concentration within the immobile region defined by [Goltz and

Oxley, 1991:548]

C'(r,t) = z-• C'(rz,t)dz (A.11)im 0 a

If the depth or thickness of the aquifer region is b [L] and an

extraction well is present pumping at a rate Q, [L / T], with

the mobile region dispersion coefficient, D., given by

Dm(r) = a, V(r)I (A.8)

then the radial velocity is

V(r) - Q" (A.12)
2 bO..r

We now seek a dimensionless fori. of Equation (A.10). Thus, we

develop dimensionless variables. If we define

X = C, r (A.13)

T = C2 t (A.14)

Cm(X T) - C(r,t) (A.15)
,0

A-4



Ci.(X, T)- i C'(,t (A. 16)

C0

where X is the dimensionless radial distance, T is the

dimensionless time, Cm(XT) is the dimensionless mobile region

solute concentration, C• (X,T) is the dimensionless volume-

averaged immobile region solute concentration, C1 and C2 are

constants, and C' is some initial maximum concentration of

C'(r, t = 0) and C'(r, t = 0) between the well radius, rý [L], and

the radius of the initially contaminated zone, r. [L]. Then

C'(r, t) = C' X C. (X, T) (A.17)

C'(r, t) = C , = C1 1 (X,T) (A.18)

and

W' (rt) - c" DCm (X, T) LT cd = Cm (X, T)

0 -Y (q) (A.19)

aC'M(rt) - C" Cm(X'T) dX =C" Cmn (X, T) (C

%0 0P o( 1  (A.20)

M aC,. (r, t) _ [ C"(rt). dX C" (X , T) ( 2)

2 a O[r Idr 0i 2CIC (A.21)

aC" (r, t) = mC (X, T) dT - C,,n (X, T) (A.22)

a 0 a" dt 0 (o2
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Substituting these expressions into Equation (A.10) gives us

? W. (X, T) D. -2rc, 2C (X, T) Vr((r) C., W.m (X, T)C2 ['Y Rm 0 X2 Rm 0 X

(A.23)

SCP i (X , T )

Dividing each term in this equation by C2 and C' yields

aCm(X,T) _Dm C1
2 a 2Cm(XT) V (r) C, WCm(XT)

R, C2  Rm C2  X

(A.24)

-I (X, T)
aT

Recall that

Dm,, a, IVm (r)I (A.8)

V( - Q. (A.12)

2 2ibbOr

Substituting these expressions into Equation (A.24) produces

Cm (X, T) = a1Q-C,3  2Cm (X, T) + QWC 1
2  m(X, T)

)T 2nbOm XR.C2 C X2 2tbOmXRmC 2  aX

(A.25)

_ Cj (X, T)
aT

In order to determine C, and C2 uniquely, we seek a second

equation. In Chapter 2, we discussed how the transfer of solute

between mobile and immobile regions may be assumed to be
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governed by Fickian diffusion of solute within immobile regions

of specified geometry (Goltz and Oxley, 1991:548-549].

Mathematically, Fick's second law of diffusion describing

contaminant transport within immobile regions is

aC' (r, z, t) =D" a C (r, z, <tz)

Rim 0 < z < a (A.26)

If we define

Z = C3 z (A.27)

C: (r, z, t)C, (X, Z, T) = r (A.28)
C0

where Z is the dimensionless immobile region variable,

Ca(XZ,T) is the dimensionless concentration at points within

the immobile region, and C3 is a constant, then

C(r,z,t) = T C.(XZ,T) (A.29)a:rzt = C1 C,'C3'1C2

and

•C(r,z,t) W .Ca (X, Z, T) dT C. (X, Z, T)c3CIP C (C, (A.30)
at 0 T dt 0 aT

aC(r,z,t) WC (X, Z, T) dZ WC. (X, Z, T)
dz (r (C 3 ) (A.31)

az 0Z dz 0 )z
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Substituting these expressions into Equation (A.26) gives us

"IC. (X, Z, T) _C __X, Z,___T_

(A.32)

or

R=C.C2 ((X, Z, T) _ D' a2[Z•_ •Ca(XZ,T)
R_- Z-' CoC3L2 _ Z (A.33)

where Equations (A.32) and (A.33) are defined over the interval

0 < Z < a. Dividing each term in this equation by Run C, and

C 2 yields

DC.(XZ,T) _ D C3
2 1 ± Zui •C 1(X,Z,T) 0 < Z <a

0T Rim C 2 ZIU-1 aZ. Z I

(A.34)

We now seek the constants C, and C2 in Equation (25) such

that

a , Q . = 1 (A.35)

2 lbtmR.C 2

and

Qw C 2
QW, = I (A.36)

2 ibOnR. C 2
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Solving C2 in terms of CI in Equation (A.36) yields

QW C 12
C2  = b R (A.37)2 nbe.R.

Substituting Equation (A.37) into Equation (A.35) gives us

a, Q" C1
3 (2 7bOmRm) =1 (A.38)

2xbO.Rm QCI
2

or

alC 1 =1 (A.39)

Thus,

C -(A. 40)
a,

Substituting Equation (A.40) into Equation (A.37) results in

C2 2_ _R_ 12 (A.41)
2 xbO Rmn al 2

Therefore, Equations (A.13) and (A.14) become

r

S=- (A.42)
a,

T= Q,,t
2T bOmRma 2  (A.43)

We now select C3 so that when z = 0, Z = 0 and when

z = a, Z = I That is, we want to normalize Z so that it
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exists in the interval 0 < Z < 1. Therefore, Equation (A.27)

becomes

z
Z -(A. 44)

a

where

C3- (A. 45)
a

Using Equation (A.25) together with Equations (A.40) and (A.41)

results in the dimensionless form of Equation (A.10):

Cm(X, T) _ l O2 C•(X, T) + I CW(X, T) aC)(X, T) (A.46)

aT X aX2  X DTX GT

Taking the Laplace transformation of Equation (A.46) and

suppressing the (X, s) notation where S is the Laplace transform

variable results in

DCxj 2C +. -~a)L aP A7)

or

1 a2m 1! ac
sCm - C.(X,T = 0) +- +

X aX 2  X ax
(A.48)

- [[sC - C• (X, T = 0)]

where Cm(X,s) is the Laplace domain dimensionless mobile region

solute concentration, CUm(X,s) is the Laplace domain
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dimensionless volume-averaged immobile region solute

concentration, and S is the Laplace transform variable.

After describing remediation of a cylindrical contaminated

area of extraction well radius r., radius of contamination r.,

and defining X. = r / a, and X. = r / a, as the

nondimensionalized well radius and contaminated area radius,

respectively, the following initial and boundary conditions can

be formulated for the various models [Goltz and Oxley, 1991:549-

550; Valocchi, 1986].

Initial-Conditions:

Cm(X,T = 0) = Fm(X) X. < X < X. (A.49)

C,(X,T = 0) = F,(X) X" < X < X. (A.50)

Cn(X, T = 0) = C,(X, T = 0) = 0 X > X. (A.51)

where Fm(X) and F=(X) are dimensionless arbitrary initial

concentration conditions in the mobile region and immobile

region, respectively. The diffusion models require tne

following addicional initial conditions to describe transport

within the immobile regions [Goltz and Oxley, 1991:549-550]:

C.(XZ,T = 0) = F1(X,Z) Xw < X < X. (A.52)

C.(X, Z, T = 0) = 0 X > X. (A.53)

where F (X, Z) is the dimensionless arbitrary initial

concentration condition in the immobile region of a certain

geometry. Again, Equations (A.49), (A.50), (A.51), (A.52), and
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(A.53) state the initial conditions, which assumes contamination

of mobile and immobile regions at some arbitrary concentration

within a cylindrical region of dimensionless radius X..

Boundary Conditions:

C.(X.,T) + -C (X.,T) = 0 (A.54)aX

-C (Xw, T) = 0 (A.55)

The diffusion models require additional boundary conditions •o

describe transport within the immobile regions of certain

geometry.

aJc,

57 k X, Z = 0, T) = 0 Xý < X (A.56)

Ca(X, Z = 1, T) = Cm(X, T) Xw < X (A.57)

Equation (A.54) states that the total mass flux inward at the

outer boundary (X = X.) must always be zero, since initially,

there is no contaminant mass at X > X.. Equation (A.55) states

the boundary condition at the well radius and is based on the

assumption that at any time, the concentration inside the well

bore is equal to that entering the well from surrounding media

[Goltz and Oxley, 1991:549]. This implies a zero concentration

gradient at the interface between the well and its immediate

adjacent aquifer. Equations (A.56) and (A.57) state that the

concentration within an immobile region of certain geometry is
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zero at the center and is equal to the mobile region

concentration at its outer boundary.

Now that we have established the governing differentiAl

equation (Equation (A.46)) and the initial conditions and

boundary conditions, we will now go through the mathematical

formulation for each model.

Local Eauilibri,--Modal (LXA%. From Equation (A.46), if

is defined to be zero, ard if we suppress the (X,T) notation,

then Equation (A.46) becomes

__m I ia2C Iac.-Cm _ 1C +-(A.58)
,T X aX2  X aX

and Equation (A.48) becomes

SCm - Cn(X,T=0)= + (A.59)x a•x 2  X ax (.9

Rearranging this expression and multiplying each term by X

gives us

a2  + XsCm = --XC (X, T 0) (A.60)aX2 aX

If we define

y -S (A.61)

and

F(X, s) = -XCm(XT = 0) (A.62)
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together with the initial condition Cm(XT = 0) = F.o(X)

then Equation (A.60) becomes

D2 + aC - XC. = F(X,s) (A.63)

First-Order Rate Modea. In Chapter II we introduced the

first-order rate model. That is, the transfer of solute between

the mobile and immobile region can be described using a first-

order rate expression:

iC (r,t) [C' (r, t) - C' (r, t)] (A.64)
_)t O R Mii

We seek a dimensionless form of Equation (A.64) . Recall

Equations (A.4), (A.15), (A.16) (A.42), and (A.43)

---- (A .4)

OmRm

C.(X,T) = (r, t) (A.15)
C0

Ci•n(X, T) = mC, (Ar't)
C,0

r

- (A.42)
a,

T Q"t (A.43)
2 ibOmRa,

2

Rewriting Equation (A.64) into dimensionless form, term by term,

yields
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aC r, t)C (X, T) dT C a (X,T) fQ .A.65
0 CT dt = 0  2-,2abO a 2 Ra 2ARm

where

C'(r, t) = C .Cm(XT) (A.66)

C' (r, t) = C" C=(X,T) (A.67)

Substituting these expressions into Equation (A.64) gives us

CC a(X, T) Q. a [C. _( '
"C o 20T2 2-, CmaX2• CT).Cm(XT)] (A.68)

or

ac n (X , T ) _ j 27tbO :al2R m aL I C '[C .(X ,T ) -C ,. (X ,T)](A .9)0 Q - Q , c O nRun 0[•CT • X ) A

Thus,

c(X,T) [C (X, T) - C • (X, T)] (A.70)
C)T Q .P

If we define the dimensionless first-order rate constant a as

a• 2 irba1
2

a d (A.71)
Q.3

then Equation (A.70) becomes

acmjXT) = a[Cm (X, T) - Ci (X, T)] (A.72)
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Taking the Laplace transform of Equation (A.72) and suppressing

the (X,s) notation yields

L~- (a= - ci1) (A. 73)

sC - Cn (X, T = 0) = a(Cm - Cm) (A.74)

and solving for CZ in terms of Cm gives us

- = C. (X, T = 0) + aCm (A. 75)

Inserting this expression into Equation (A.48) results in

s?. -C.(X,1T = 0) = + X X- + in C(X, T = 0)

(A.76)

- PS Ci (X,T = 0) + Cm

- ~sL s + a S

and rearranging, collecting similar terms, and multiply each

term by X gives us

a2Cm acr XC'1S += _XCm(XT = 0)
ax---2 ax s +----

(A.77)

+ XC ( X,'T = 0) PSso •

If we define

y' = sI + Pa (A.78)
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and

F(X, s) =-X[C. (X, T = 0)- Ci (X, T =)[1s -)(s + a (A 79)

or

F(Xs) = -X[Cm(XT 0) + kCn, (XT = 0)s (A.80)
IL s+a I

together with the initial conditions Cm(XT = 0) = Fm(X) and

Cn(X,T = 0) = Fi.(X) we get

F(X,s) X X(Fm(X) + IOaFm,(X)) (A.81)

So, Equation (A.77) becomes

a2Z .+ ac. Xy?ý = Fý(X,S) (A.82)aX2 ýX-

Diffusion Modals. As previously discussed, the transfer of

solute between the mobile and immobile regions may be assumed to

be governed by Fickian (Fick's second law) diffusion within

immobile regions of specified geometry (Goltz and Oxley,

1991:548-549]. Mathmatically, Fick's second law of diffusion

describing contan .nant transport within the immobile region is

aCC (r, z, t) _D" a azC_ OC(r, z, t)•
R - - U C1 a 0 < z < a (A.26)ii t z U-1 az ( az

Recall Equation (A.34) which is the dimensionless form of

Equation (A.26):

C._(X,Z,T) _ D' C32 1 a F W 3C(X,Z,T)
T _D C 2 3 _ a1 0 < Z < a (A.34)

0T Ri C2 Z L jz
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If we substitute in Equations (A.41) and (A.45) then Equation

(A.34) becomes

._ D; 27b~mRma,2  1 0 aC 0 < Z < I (A.83)

SRim Qw a2 zu-1 ZZ

If we define a dimensionless immobile region solute diffusion

coefficient, De, as

D'a 2 2 7bO.R.
= a2 QER2 (A.84)

Then Equation (A.83) becomes

C. (X, Z, T) = D. a [ZU_ C1 . (X, Z, T) 01< Z<I (A.85)
aT T--7 -5Z DZ

and is valid for all the diffusion models. That is, u = 1, 2,

and 3 Now we take the Laplace transform of Equation (A.85)

using Equation (A.52) (initial condition) and Equations (A.56)

and (A.57) (boundary conditions)-

C.(XZ,T 0) = F.(X, Z) X., < X < X. (A.52)

~a(X, 0, T) =-0 0 < X < X. (A.56)
az

C.(XZ = 1,T) = Cm(XT) X, < X < X. (A.57)

So,

= L ZS-a1 Z U Z (A.86)
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sC-C. (X, Z, T=0) D, (A.87)

.- (X, Z) D Z_• aC. (A.88)
z 'j1 az az)

thus

Dý a Z U-'• -s.=- (XZ) (A. 89)

where C,(X, Z,s) is the Laplace domain dimensionless

concentration at points within the immobile region. The

boundary conditions associated with Equation (A.89) are derived

by taking the Laplace transform of Equations (A.56) and (A.57).

Thus,

--a (X, Z = 0, s) = 0 X" < X < X. (A.90)
az

C1 (X, Z = 1, s) = Cm(X, S) X, < X < X. (A.91)

We seek the general solution to Equation (A.89) using the

boundary conditions (A.90) and (A.91) for cases of v = 1, 2,3

(layered, cylinder, and spherical geometry, respectively). That

is, we seek

C. = C., + C.P (A.92)

where Ca is the general solution to the differential equation,

C.c is the complementary solution to the homogeneous

differential equation, and C.,P is the particular solution to the
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nonhomogeneous differential equation. Now we look at the case

where 1) = 1

Layared DIffusion. We first find the general solution

to the homogeneous problem. So Equation (A.89) becomes

D 'U- Z_ -C1c sCC =0 0 < Z < I (A.93)

If we define U = C. , then Equation (A.93) becomes

De a - -a -- SU = 0 0 < Z < I (A.94)

When 1 = I , Equation (A.94) transforms into a second order

differential equation with constant coefficients:

2u
D -aZ2 su =0 0 < Z < I (A.95)

The general solution of this differential equation is of the

form

u(Z) = clu 1(Z) + c 2u2 (Z) (A.96)

where C, and c2 are constants and uj(Z) is of the form

uj(Z) = emiz [Ritger and Rose, 1968:121, 129]. So,

D m2 enz - sez = 0 (A.97)

e' (D.m2 - S)= 0 (A.98)

Since e is not equal to zero then the auxillary equation is

Dm 2 - s = 0 (A.99)
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So,

m or m =m2 =A.j100)D,

Thus,

u(Z) = cAe + c 2e (A.101)

If we define

(A. 102)

then

u(Z) = Ce0 + c 2e-Q)Z (A.103)

We now check this solution for linear independence to

determine if Equation (A.103) is the general solution to

Equation (A.95). Thus, we use the Wronskian, W[u), u). That

is, if W[ul, u 2] * 0 then the two solutions, u, and U2 , are

linearly independent and u(Z) is the general solution. Using

Equation (A.103) with U1 =ez and u 2 = e-Jz we get

Ul U2  eoz e-,,z

W[u1 , U2] = (A.104)
•u (oewZ - -(C-)ZUf U2 ~ M

= -Oe- eOz -OeO e-O = (-o- (o = -2 •o 0 (A.105)

Thus, U, and U2 are linearly independent so u(Z) = clez + c 2 e-Mz

is the general solution.
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Now we seek the particular solution using a Green's

function. If we define U = C, then from Equation (A.89), we

have the following nonhomogeneous differential equation:

a2U
D -•- sU = -F.(X, Z) (A.106)

with boundary conditions

aZ (Z 0) 0 (A.107)

U(Z = 1) = 0 (A.108)

Rewriting Equation (A.106) gives us

_2U 1

au = - D-- F.(X, Z) (A.109)
•Z 2  De

or

S- 0)2U = -I F.(X, Z) (A.110)
aZ2 D e

where (02 = s / D. (Equation (A.102)). We know the general

solution of this equation is of the form

U(Z) = AUI(Z) + BU 2(Z) + Up (A.111)

where A and B are constants and Up (or C?,) is the particular

solution (Ritger and Ross, 1968:438]. Based on the homogeneous

solution, we know that U (z) = cle z + c2e-(z satisfies the

boundary condition aU,(Z = 0) / aZ = 0 That is,

cWe (°) -0)2e-w(°) = 0 , which implies C, = C2  So,
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U, (Z) = cieo + ce-0 (A.I12)

If we choose C, = 1 / 2 (without loss of generality), then

U,(Z) - = cosh aJZ (A.113)
2

We also know that U 2 (Z) = c3e• + c 4e•z satisfies the other

boundary condition U 2 (Z = 1) 0 Thus,

U 2 (Z = 1) = 0 = c 3e'(1) + c4e-o(1) (A.114)

so

C4  -c 3e (A.115)

Therefore,

U 2 (Z) = c 3ez - c3e2c e-wz (A.116)

= c3eo[e e-° -e0 e0-] (A.117)

=C~edOI [em(Z1) - e(-O$~) (A.118)

or

U 2 (Z) = c3ew[-ei)(I-z) + e-)(I-z) (A.119)

Since c3e- is a constant, let's choose it to equal -1 / 2

(without loss of generality). This gives us

U 2 (Z) = 2 sinh c( - Z) (A.120)
2
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We now check to see if we have a trivial or non-trivial

solution using the zero boundary conditions for the homogeneous

case:

-(Z 0) 0 (A. 121)

u(Z = 1) = 0 (A.122)

This will determine the form of the Green's function for the

particular solution. We know Equation (A.110) with the above

boundary conditions has a unique solution if and only if the

homogeneous problem (Equation (A.95)) has only the trivial

solution for the same zero boundary conditions [Ritger and Ross,

1968:439]. Recall, u(Z) = Cie z + c2e- (Equation (A.103), so

S(Z = 0) = 0 = oxe - = (C 1 - c2, (A.123)

thus,

C, = C2  (A.124)

At the other boundary condition, u(Z = 1) = 0 , we get

u(Z = 1) = 0 = Cie + c2e-O41 i (A.125)

c 2e- = Ciet (A.126)

C2 -cie2o (A.127)

thus,

C1 = C2 =-cie 2a or c, = 0 (A.128)
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so, u(Z) = 0 is the trivial solution.

Since we have a trivial solution we now construct the

particular solution using a Green's function which is of the

form [Ritger and Ross, 1968:440]

UI (Z)U 2 (0 Z < < I
p<;Ow(Ul, U21(0>

g(Z, ) = (A. 129)

UI (O)U2 (Z)p(C)w[ U1, U2](C)o <z

where W[Uj,U 2 ](ý) is the Wronskian of U, and U2 , and p(C) is

the coefficient of the first term in Equation (A.110) . From

Equation (A.110), we see that p(ý) 1. Now we determine the

Wronskian:

=IUIU 2 1 =_ cosh rOZ sinh (0(1I-Z)W[U1, U22 Uf Uf (o sinh wZ -(0 cosh (0(1 - Z) (A130)

= --o cosh co(1 - Z) cosh WZ - o sinh WZ sinhc0(1 - Z)

(A.131)

= -0[cosh (OZcosh (0(1 - Z) + sinh coZsinh w(1 - Z)]

(A. 132)

= -0o cosh((OZ + (0(1 - Z)) (A.133)

0- Ocosh 0O) 0 (A.134)
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So,

cosh (oZ sinh (06 - Z < < 1

-0) cosh 0
g(Z, ) = (A. 135)

cosh o sinho)(1 - Z
-(o cosh 0)

Therefore,

Up Ca,(X,Z,s) = -J'g(Z,d) F[(X' )JdD (A.136)

Thus, Equation (A.92) is

Ca = Cac + C.p = A cosh OZ + B sinh 0)(1 - Z)

(A.137)

De

or

-- cosh WZ+Bsn ( )+ hCZ zsinh CO(I - ý)F.(X, C)dý
Ca = AcoshZ+ Bsinh)(- Z) +D cosh o

sinh0)(l - Z)oz+ -~~~ 'Ioh4F.(X,ýd
o)D cosh 0)0

(A.138)

Now we apply the nonzero boundary conditions (Equations (A.90)

and (A.91))to find the constants A and B.
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ac. (X, Z = 0, s) 0 = (A sinh 0(0) - (oB cosh 0o(I - 0)

+ Csinh CD(0) 1 sinh co(1 - C)F. (X, ý)dC
+oD. cosh CO

_ cosh 0)(0) sinh 0)(1 - Z)F, (X, Z)
0)D. cosh co Z= 0

-Co cosh •(0 - 0)• •osh(4) ,(,ýd
ODco cosh ( C

+ sinh (0 -0) cosh(coZ) F (X, Z)

caD, cosh o =

(A. 139)

or

0 -- oB cosh 0o (A.140)

So, B = 0 Now we apply the second boundary condition

C1 (X,Z 1, s) - C.(X, S)

S(X,s) = Acosh(o(1) + cosh W(1) Jsinh0o(_ -)F.(X, )dý
(oDe cosh (0

(A. 141)

+ siih c(I1 - o)sh(4)
M ioDcosh) h F((xo)d•

ZC. (X, s)
So, A = Cos) O Thus, Equation (A.138) becomes

cosh Z o

h - g g(Z,) F. (X,C)d (A.142)
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Combining Equations (A.48), (A.49), and (A.50) we get

I - 1 D - (X)] (A.143)
sm- FT(x) x X + LS

Now we need an expression for Cm. Recall Equation (A.11):

C'z(r,t) = 1)z-C' (r, z, t)dz (A.11)

Normalizing and converting this equation to dimensionless form,

where Cn(X,T) = C'(r,t) / CQ (Equation (A.16)) and Z = z / a

(Equation (A.44)) we get

C'Cm,(X,T) f ( 1) Z(1)) C'C.dZ = UC'.,Z' C, dZ (A.144)

So,

C (X,T) = ZUI- C.(X, Z,T)dZ (A.145)10

Taking the Laplace transform of Equation (A.145) with 1 = 1

we get

i (X, s) (A.146)
L C (X, Z, s) dZ(A 1 6

Substituting in Equation (A.142) into Equation (A.146) we get
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C --X, s)--h_ -D-" g((Z,X)F. (X,)d (A. 14 7)

I.(~s Jcosh (0Z D, - L .rd](rd

c-os'-' €.0 I D-'-[" g (Z,ý) dZ ý.(X,ý) dý (A. 1498)
cosh W) D..40

Cm.(X, S) [s;inh OZI IIIg(Z d MC)C (A. 149)

S s) cosh (o -I D g(Z, ý)dZ (X, ý)dý (A. 150)

Now we determine 0 g(Z, C)dZ where g(Z,ý) is defined by Equation

(A.135).
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|zg ( coshI I s Iinh W 0

Jo[ -o -cosh o J
(A. 151)

+ j1[coshw4sinh0)( - Z)

sinh o)Z siflh)000 ) ý cosh 0cosh0)(l- Z) 1

-sOD 2 cosh D 0 + - cosh(-) (A.152)

sinh O0 sinh co(l - cosh O3=+ 2

-- 0)2 cosh (0 cosh 0)
(A.153)

cosh eo1 cosh co(1 - 0

O02 cosh w

( 1 2 cosh[co sinh 0 sinh CO(1-) + cosh C cosh O)( - )]

(A. 154)

cosh+2
w02 coshc

2osh 
(A. 155)

(o2 cosh 0)O cosh

So,

IIg(Z, C)dZ = - _- cosh 0[I + (A. 156)

Inserting this equation back into CZ(X,s) (Equation (A.150))

gives us

C(X, s) = M s ) -1 wI+ Cosh (X, r)dr (A. 157)
w cosh 0) w02D L cosh w I
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Now we have an expression for C,(X, s). Using this equation

let's substitute it back into Equation (A.143):

sCm - Fm (x) = lam+ C
F.x (X)f -X- +3[Sann - F. (X)] (A. 14 3)

Thus,

SmF. (X) +x ax 2  ax

RESClsinhCX - 2 1 T +cos h F. (
o cosh O 0)2DD,, cosh '0 ' "

(A.158)

Rearranging this equation and multiplying each term by X gives

us the following

a2 + - - Xsý!(1 + Gsih (0 X[Fm(X) + OF.m(X)ax--+ax 0) cosh Ci =

+ P__S -1 + cosh ( x, (
(02D L cosh 0)

(A.159)

If we define

Y = s(1+ 0sinhco(0 (A.160)

k. CO cosh (0

and recall that S = C 2D, (Equation (A.102)), then we get

ax- + a x = -,X[F.(X) + OF. (X)
cOshýh( (A.161)

JOcoshfCO zJ _ o
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The right-hand side of this equation can be further simplified

using the initial conditions C (X,T = 0) = Fi(X) (Equation

(A.50), C.(XZ,T = 0) = F.(X, Z) (Equation (A.52)), and the

dimensionless expression for the volume-average immobile region

solute concentration, C,.(X, T) LZU-IC. (X, Z, T)dZ where

) = I (Equation (A.145)). Therefore, at time T = 0

F (X) = C,1 (X,T = 0) = JC.(X, Z,T = 0)dZ = oF,(X,Z)dZ10 . (, Z) d (A. 16.2)

Putting this expression for F•(X) into the right-hand side of

Equation (A.161) gives us

-X[F. (X) + Pj"F. (X, Z)dZ + 0r[ cosh +(XC)dI (A.163)
.10 '0 Lco sh W J

or

-X[F.(X) + IJF.a(X, )dCZ + 01-1cos--- .31

(A.164)

Thus, Equation (A.164) becomes

-X[Fm(X) + 0 J1cosh(oK) F. (X, ý)dC] (A.165)cosh (o

So, if we define

F(Xs)= X[F.(X) + cosh(W4) F,(X, )d] (A. 166)I ~cosh c (

then Equation (A.161) becomes

a2 ZCm -C
)X-- + X XCf = F(X, s) (A.167)
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Using similar techniques as in the above derivation when 1=

, we now seek the solution when v = 2

C__lindrcal Diffunion. From Equation (A.85) we have

C(X, Z, T) = D a Z[z-I IC. (x z, T)] 0 < Z < 1 (A.85)

which is valid for all the diffusion models. As previously

derived, we now take the Laplace transform of Equation (A.85)

using Equation (A.52) (initial condition) and Equations (A.56)

and (A.57) (boundary conditions):

C.(X,Z,T = 0) = F.(X,Z) X,. < X < X. (A.52)

= 0,T) = 0 X, < X < X. (A.56)
az

C.(XZ = 1, T) = Cm(XT) X. < X < X. (A.57)

So,

S- = iz-•(z 2-- (A.86)

Szýa - C.(X, ZT = 0) =-1- a(z1 acIJ (A.87)

sC. - F.(X.Z) - - Z (A.88)
zv-1 az az}

Thus,

D, a (ZV_ o%.- sC. = _F.(X Z) (A.89)

with the following boundary conditions:
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. (X,Z= 0, s) = 0 X, < X < X. (A.90)

Ca(X, Z = 1, s) = C=(X, S) X, < X < X. (A.91)

We seek the general solution to Equation (A.89) using the

boundary conditions (A.90) and (A.91) for case of v = 2

That is,

Ca = C., + Cap (A. 92)

where C1 is the general solution to the differential equation,

Cac is the complementary solution to the homogeneous

differential equation, and Cp, is the particular solution to the

nonhomogeneous differential equation. So for the case of

u = 2 , Equation (A.89) becomes

D. z az s = -(X,Z) (A.168)

Multiply Equation (A.168) by I / D. and differentiating the first

term gives us

I -z F (X, Z) (A.169)

or

I a2e ae] •e F.XZ
1 Z-2 + SZD-(X, Z) (A.170)

Thus,

a2 C 1 a. s - F.(XZ)
- + (A.171)aZ2 Z aZ DA D,
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If we define

z=03Z (A.172)

W(a) = Ca(Z) = (A.173)

where 032 = S / D. (Equation (A.102)), then

ca aw dw
- -- (0- (A.174)

0 ai dZ

)zz (A.175)

Substituting these equations into Equation (A.171) gives us

22W 02 aw F._(X,_) __ _ _)
)W2 2 2W = 0X _)- (A.176)aj2 i Z£ D. D.

Multiplying through by 1 / 1)2 yields

a2w + - Zw _ = 2 (A.177)
b2 Z (0 • De

We now seek the complementary solution to Equation (A.177).

That is,

a 2W I aw
' + W -- 0 (A.178)ai2 i Z£

which we know to be a modified Bessel function of order zero

[Abramowitz and Stegun, 1970]. Therefore, the general solution

to this homogeneous differential equation is
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W(z) = CI WI (1 Z) + C 2W2 6Z) (A. 179)

where W,(z) and W2 (z) are of the form

W, 6z) = A I 0(() + B K0 (() (A.180)

W2(1) = CI 0 (!) + DK 0 () (A. 181)

where C,,C 2 ,A,B,C, and D are constants and 10 (z) and Ko(z)

are modified Bessel functions of the first kind, order zero and

third kind, order zero, respectively, and are of the form

I ( ) = (2.,A 
~ 8 2

10() k= (k !)2 (A.182)

K ( !1i0 (z) inz + ! (1) 1 + - +.- (A.183)
0 2k=1 (k ) 2 1)jk

To find the first solution, W1 (Z), we apply the zero flux

boundary condition to W1 (z) since Z = 0 implies z = 0

(Equation (A.90), thus

aw l(-Z= 0) = 0 (A.184)

So,

S= 0 = A Io(Z 0)+ B Ko(I = 0) (A.185)

= BK( = 0) (A.186)
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since K0(i = 0) is not equal to zero, we take B equal to zero.

Therefore,

W,(i) = A 10(i) (A.187)

Without loss of generality, let's take A = s, 5o

w() = 1o0) (A.188)

We also know the second solution, W2 (z), to be of the form

W 2 (i) = C1 0 (i) + D KO(i) (A.189)

and satisfies the 'zero' boundary condition (Equation (A.91))

where Z =1 implies z 0)

C,(XZ = 1, s) = 0 = W2 (z = 0) (A.190)

So,

0= C 10 (o) + D Ko 0 (o) (A.191)

or

D I0(w) (A.192)

So,

C Io(Co)
W2() = CI 0() - K0 (i) (A.193)

Without loss of generality, let's take C = K0 (CO). Thus,

W 2 (i) = Ko(CO)1 0 (i) - 10 (O)Ko(i) (A.194)

Now we seek the particular solution (C?.,) to the following

nonhomogeneous differential equation using a Green's function:
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a2W 1 W _W F(X, i) (A177)
Z- =i (A 177,

First, we construct the Green's function which is of the form

M WN I)W2 (C)

g(Z, ) = (A.195)

W1 (0)W2 6Z)p(;)ww,, w](;)0 < < 3z

where W[W,,W2 ](C) is the Wronskian of W, and W2 , and p(C) is

the coefficient of the first term in Equation (A.177). From

Equation (A.177), we see that p(C) = 1. Next we determine the

Wronskian, W[W1 , W2 ]:

10 (i-) KoO(w) 1.M) - 10o)) KO(i)
W[W1 IW 2 1 = (A.196)

I, (i) KO (o) V (i) - 1I (o)) K' (i)

= Ko(o)Io(z)I)(1) - Io(w)Io(z)K'(^)

(A.197)

- Ko(W) 10(z) 1'(z) + 10 (W) I(Z)KolZ)

= Mo(c0)[I'(i) Ko(i) - 10(i) K'(i)] (A.198)

= I 0 (o) W[K0 (M), I0 ()] (A.199)

We know that W[Ko(Z), 10o()] = 1/ Z [Abramowitz and Stegun,

1970). So,
I

W[-W1 IW 2 = 10 (O)-- (A.200)
Z
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Therefore, the Green's function is

•WI 0) W2(0)• < < c

g = (A.201)
C WI (Q)W2 0)

S10 (Z)[Ko(o) Io(m ) - 0 (0) Ko()] <

10(o)

(A.202)

I0 (0)[K ,(o) I0(z) - 1°(o)) K°(Z)] 0 < <
10 ((o)

and

C() =-Igo, o IW2 D. d (A.203)

So, the general solution is

W(i) = AW,(i) + BW 2()-o g,) m C (A.204)

= A 10(i) + B [Ko(O) Io(i) - I1(o) KO(i)]

10(Z) • .[K° (°) 1(0 ) 1- (0)) K°(O )] ] 8 (X, •)d• (A.205)

- [K°((o) I°(z) - I°(c°) K°(z)] £•'Io(•) Fo (X,•)d4
02 D0 ID1o0)

To find the constants A and B we use the 'nonzero' boundary

conditions (Equations (A.90) and (A.91) where W (z) = C1 (Z) ).

Therefore, applying the boundary condition

Z)W (i = 0)= 0 - 0 (A.206)
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we get

(= 0) 0 = A I1(0) + B[KO(w) I(0) - 10(w) K'(0)]

_ I' (0)0 KI(o)) 10 10(t) K( (X, ý)dý

+ I2(0) {(0)[Ko (wo)) I(0) - I(o) Ko (0)] F.(X, 0)}
+ 2D. Io ((0)

_ [KO)Io(0) - 0o(C0) Ko(0)]

0o2D. I ((o)

[Ko(w) 1o(0) - I(o) Ko (0)] [(0) io(0) P. (X, 0)]

o)2D. 10()

(A. 207)

Since I(0) = 0 [Abramowitz and Stegun, 1970] then

0 = (O)K'(0)] (A.208)

Since [-Io(W)K'(0)] does not equal zero, we take B = 0

Applying the second boundary condition (Equation (A.91))

W(0O) = Ca(X, Z = 1, s) = Cm(X, S) (A.209)

we get

Cm(X, s) = A I0 (0) - 2 Io())f[K 0 (I)-I 0 (w)K 0 (ý)I(X,ý)dý

K_ [ 0 )10  -D I- ( ) K ] (Io()) F1 (X, ý)dý

(0 2D. 1 ((o)

(A.210)
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Thus,

ACm(X, s)
A - )(A.211)Io (0))

So, Equation (A.204) becomes

W()) I(i) 1 - o J g(0,0lFC(X,)dC (A.212)Io ((O) (02D,

m(X, S)
Io (0))1 Z

10(i, ) 10 r

-W I(C) , [ Ko()o ) -IIo 0 ))Ko(0)]FK(X, )dC (A.213)

KODw Io ()K() ]
- 20) D, 10)) K J° I°(,) F1(X, C)dC

co2De Io ())

Recall. Equation (A.145)

C• (X, T) = ' U Z1- C. (X, Z, T) dZ (A.145)

and W(z) = a(^z / (0) = Ca(Z) where . = 0)Z Taking the

Laplace transform of Equation (A.145) with 1) = 2 , we get

C•(X,s) = 2 Z C (X, Z, s) dZ = W &z (A.214)

Substituting the general solution, W(i) (Equation (A.212)),

into this expression gives us

-,~IX~s= 2Cm(X, s) i2(i)d- 2C(X, s) =O )2 10(0)) FOi1(~i-(049De J gi,C),(X d i

(A.215)
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To determine the first integral, we use the following

homogeneous differential equation:

2 d210() + d1(i) _ 21(i) = 0 (A.216)
d-Z2  di

Multiplying each term by I / z produces

d1(i) dlo (i) i 0

d 2I°'"0 + -io(i) = 0 (A.217)
dz 2  d2

So,

d d21o(0) +d~o(0)
Z+o(Z) = z dZ2 di (A.218)

Integrating both sides of this equation gives us

zi d2 (Io ()di dI (i) di (A.219)

10 io0 (i)di = j d i2  d+ d2

Now, using integration by parts on the right-hand side of this

equation yields

10 i 10 (i) d2 = i d~ df~ o (-2) j + 10(i) ()0A20
0di 00 di 10(A20

0° (A.221)

or

Jz 0o•^ =i. () = (01((0)) (A.222)
0
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Thus, Equation (A.215) becomes

) 2Cm(X, s)[(02())]_
C0(Xs) = 1 O(o) 0 CO4D,,° J• g(, £) (X, )dC di

(A.223)

2Cm(X,s) I2 (m) 2dDr
----- o) (O4D JO (~i, C)& (, Cd/ (A. 224)

Now we solve

zO' gl(, C)di = V g(i, C)di + J g(0, 0)d& (A.225)

= C[Ko) Io() ) - Io(()[ K0 (()] K :p i0 (i)di

I0(0o)

(A.226)

+ Co(0 [Ko o) I o(w ) - 10  KO(i) ]-diIo ((0)

C [KO(o) I0(C) - I(m) Ko(•)] JC) Io()d

I0(o))

+ 1 Io (i)di - 10 ) Ko (i) di

(A.227)

From Equation (A.222), we know these integrals (similar

derivation for K0 (z)). Thus, Equation (A.225) is
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Jzg('i~ ~ KO ~(K 0() IoC Io I(0)) KO (C)ioz g1 (o0) z0I

+ Io (0) Ko (w) z 1 (A. 228)
Io ((0)

10 (Co) 0) K

_ [Ko0(O)Io(0 )- I0(O)Ko(•)][ i•(•)]

KO ((0)Io (0 0 () K Cl I o

+ 10 I()Ko((0) [0}t) 1(0 )_ -•,) (A.229)
Io (o))

10 Io( ) I- (0)) [o( K ' (CO) - K

Collecting terms and simplifying,

ý0oI° (ý) Ko (o))IV (0))
=z g(-ZI &Z = tO) 0()C) Ko (C) + 0Io1I( O )

'0 (A .2 3 0 )

_ 0  10 K(w) + C21o (() K' (C)
Io (o)

=2 ¢[o•K'(C) - I' (ý)KO(]
(A.231)

+ Ko ((0) IV((o) - I(0w) Ko((O)]+ I o( co ) 
0

C2 (-.W [K, 1 I(C)) + I () (W[KC, Io](8)) (A. 232)

C.2_ + W0K) (1) (A.233)

So, Equation (A.225) becomes

zWi g(i, C) di - ( c) (A.234)
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Returning to Equation (A.224)

2Cmý (X, s)I' (a)) 2
1{XS) 0 4Dr._ ( g{,)d_ FM( X )dC

(A.224)

and substituting in Equation (A.234) we get

C(Xs i(X,S) X,s)() 2 10-c) [ I())d0I3 04DJO 4 IDo 10(0))

(A.235)

If we let 0 = , then when C = 0 , = 0 and when

S) , so,

s 2Cm(X,s)I0(o) 2 l )_FX )
C(X, S) = 4 '0[10  1 F. (X, 4))od0) 10(0o ) oD,, o 10((°)

(A.236)

or

2•Xs = C(Xs) I'(o)) 20 J1./(04) ]
00(X, S) = 1 2D- '°-0 - 1 F. (X, 4)dý (A.237)

Using Equation (A.143)

1 1 -C.
SCm (X) - X aX2 X [ -l(X)] (A.143)

we substitute in Equation (A.237):
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s .- F(x)= 1 ax2  + + Ia .+ .(X)

(A.238)

( I° (Q) 1 F. (X, 4)d4
- CIm (0) O 2De L 10(w) 1

Rearranging and multiplying each term by X gives us

a2 m ac. xs .[20I1o) + I X[Fm(X) + OF,(X)
ax2 + X1 [I(0)) 1

+ ÷ _-- -(L)o)-- + 1 =1 ( ) X
-- FIo (X,)

0)2Deo 0(m))

(A. 239)

If we define

I= o+ P1 (o)) (A.240)

where 1'((0) = I(0)) , the modified Bessel function of order one

[Abramowitz and Stegun, 1970], and recall that S Z 0 2 D,

(Equation (A.102)), then

a2 m aCmx XYC. = -X[Fm(X) + PFWn(X)

(A.241)

+ 2-j'r(Io ) 1)F.(X, 4)d4]

The right-hand side of this equation can be further simplified

using the initial conditions C,(X,T = 0) = F (X) (Equation

(A.50), Ca(XZ,T = 0) = F.(XZ) (Equation (A.52)), and the
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dimensionless expression for the volume-average immobile region

solute concentration, C (X,T) = -1 Z 'C(X, Z, T)dZ where

v = 2 (Equation (A.145)). Therefore, at time T = 0

F•,(X) = CiZI(X,T = 0) = 2 Z C. (X, Z, T = 0)dZ = 2JLZF.(X,Z)dZ

(A.242)

Putting this expression for F,.(X) into the right-hand side of

Equation (A.241) gives us

-X[Fm (X) + 2pI, F. (X, ý)dý + i(-- Io(o())F. (X, )d4]

(A.243)

-2I4F (X, M )d]

So, if we define

F(X, s) = -X[F1 (X) + (X, (A.244)

then Equation (A.241) becomes

a2 + a XC. = 1(X, S) (A.245)

S~hericsl Diffusion. Using the above derivation when

U = 2 , we now seek the solution when v = 3 From Equation

(A.85) we have

C.(X, Z,T) = D , D [Z U_• DC ,(X,Z,T) 0 < Z < I
0<Z< (A.85)ng Z10-1 aZ[ aZ I

which is valid for all the diffusion models. As previously

derived, we now take the Laplace transform of Equation (A.85)
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using Equation (A.52) (initial condition) and Equations (A.56)

and (A.57) (boundary conditions):

C.(X,Z,T = 0) = F.(XZ) X, < X < X. (A.52)

= 0 X. < X < X. (A.56)

C.(X, Z = ],T) = C.(XT) X. < X < X. (A.57)

So,

(1 -Ia/= D U- 1 (ZuI1 a ) (A.86)

sC -C. (X, Z, T = 0) - Z aT_(Z Za (A.87)zU a( G-)
sC. - F 1(X,Z) = D a V (A.88)

Thus,

D . ( F. M Z) (A.89)zT-7 Tzk ( z )

with the following boundary conditions

-. (X, Z = 0, s) = 0 X, < X < X. (A.90)

C (X, Z = 1, S) = Cm(X, s) X, < X < X. (A.91)

We seek the general solution to Equation (A.89) using the

boundary conditions (A.90) and (A.91) for case of u - 3
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That is,

C.= Cac + C., (A. 92)

where C. is the general solution to the differential equation,

C.c is the complementary solution to the homogeneous

differential equation, and C., is the particular solution to the

nonhomogeneous differential equation. So for the case of

u = 3 , Equation (A.89) becomes

S(Z 2 aý.) _ SC . = - F (X , Z ) (A .246)

Multiplying Equation (A.246) by 1 / D. and differentiating the

first term gives us

I a (Z2S _F. (XZ) (A.247)
Z2 Z az D. D.

or

I [Z2 z Zý. +2 . sA•. F.(XZ) (A.248)V- ,Z----+2 -- - D-- D.(A2S

Thus,

.- + 2 -C -S _ k.(X, Z) (A.249)

a•Z2 Z aZ D, D.

Using the previously defined variables

= (oZ (A.172)

W(i) = C8 (Z) = CaU•) (A.173)
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where 0 2 = s / D, (Equation (A.102)), then

a)a _w adi _ aw
-- = = w 0)-(A.174)

a2 a (a~ a W aw~d a (aw 2 a2W- - 0C) - - 0)- 0) = (- (A.175)-q2  &zaz a a~ Y) dZ i a~

Substituting these equations into Equation (A.249) gives us

a2
2W 2w 2 aW 2 w _02 X,) _ (X, (X, .)

_2--2 + 02) D = D2 (A.(250)

Multiplying through by 1 / (02 yields

a2W 2 i)W - =-F(X, i)
+ 2 aw w (A.251)Z£ £2 (02 Dc

We now seek the complementary solution to Equation (A.251).

That is,

-- +2 + - W -0 (A.252)

which we know to be a modified spherical Bessel function of

order zero (Abramowitz and Stegun, 1970] . Therefore, the

general solution to this homogeneous differential equation is

W(Z) = CI WI (Z) + C 2 W 2 (Z) (A.253)

where W, (1) and W2 (z) are of the form

W,(6z) = Ai 0 (1) + B k0 (6) (A.254'
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W2 (z) = Ci 0 (z) + Dk 0 (z) (A.255)

where C,,C 2,A,B,C, and D are constants and i 0oz) and k,(z)

are modified spherical Bessel functions of the first kind, order

zero and third kind,order zero, respectively, and are of the

form

i_) sinh
io(6Z) = 2 - i (!) - (A.256)

2k 2z I Z (A.257)

To find the first solution, W1 (z), we apply the boundary

condition (Equation (A.90)) where C?(Z = 0) = W(z = 0)

Thus,

aw (i = 0)
= 0 (A.258)

So,

aw6
iz= 0 = A "' (z = 0) + B k0(Z = 0) (A.259)

since kV(z = 0) is undefined [Abramowitz and Stegun, 1970], we

take B equal to zero. Therefore,

W1 (') = A io(1) (A.260)

Without loss of generality, let's take A = I , so

W1 (, ) = io(G) (A.261)
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We also know the second solution, W2 ('), to be of the form

W2 () = Cio () + D ko6z) (A.262)

and satisfies the 'zero' boundary condition (Equation (A.91))

where Ca(Z=1)= W(I = 0)

C.(X,Z = 1,s) = 0 = W(z =) (A.263)

Thus,

0 = C i 0 (o) + D ko(co) (A.264)

or

D = () (A.265)ko (0))

So,

W2 (z) = Ci 0 )) ko(z) (A.266)2 6 ' (1) ko (0))

Without loss of generality, let's take C = k 0 (M) Thus,

W2 (z) = k 0 (o)i 0 (z) - io(m)ko(z) (A.267)

Now we seek the particular solution (CZ,) to the following

nonhomogeneous differential equation using a Green's function:

--W 2 =W W (A.251)

i a- CO A2 D,
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First, we construct tl-e Green's function which is of the form

w(l O) W2(0, < < CO
p(o)w[wl, w2](c,)

g(0,0) = (A.268)

W (w0 W2 ( ) oz)

where W[W,.W 2 ](C) is the Wronskian of W, and W2, and p(C) is

the coefficient of the first term in Equation (A.251) From

Equation (A.251), we see that p(C) = 1. Next we determine the

Wronskian, W[WI, W 2 ]:

w[w, Iw2 ] = (A.269)
io*(^) ko (0) io'i) - i(o(0 ) k'(z

=k ((0) io (1) i - io)i (1) k' (1)

(A.270)

-ko((o) io(z) io(z) + io (0) io (1)ko(A)

= io(O)[io(1) ko(1) - io(z) k 6z)] (A.271)

= io(cO) W[k 0(i), io(i)] (A.272)

We know that W[ko(z), io (z)] 7E / (2-z2) [Abramowitz and Stegun,

1970]. So,

wwI, W21 io(J) (A.273)
2AZ2
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Therefore, the Green's function is

Sio (0)
g(z,c) = (A.274)

2 C2 W1 (C) W2 (^Z) C

x io((0))

2C2 i0 6z)[k°(co) i°(C)- i°(0) k ( )] <

Sio (o))
(A.275)

22 io0 (ý)[ko(c&I io() - io (0o) ko (<)]

Iio (0)

and

0) =C2 D, (A.276)

So, the general solution is

W(M) = C,(•) - AW, (i) + B W2() g( ) (A.277)

= A io() + B [ko(a))io(i) - io(w) ko (i)]

S2i 0 M r [C2 [[ko (0) io(ý) - io(o) ko(C)] F. M C)d " (A.278)
7O2 De io (0o))

_2[k( (w) i (2) - i0 (o)k°(i) fko( ir X2 r
71(02 D. io (0o))

To find the constants A and B, we use the 'nonzero' boundary

conditions (Equations (A.90) and (A.91) where W(z) C,(Z) ).

Therefore, applying the boundary condition

aw( = 0) =i = 0 (A.279)
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we get

= 0 = Aio(0) + B[ko(o) io(O) - io(w) k'(O)]

_ o 2i(0) j~ 2ko (co) io( ) io (m)ko( ],X,ý) dý

2De io (0))

+ 2io (0) {(0)[ko ()) io (0) io (O)) ko (0)] F, (X, 0)}7tmoD+ i(o ()

2[k°(0) i'(0) - io(o) k°(0)] r'r2()Sio( (X, ý)dý
O 2D, io ( (0 

0 )

2[k 0 (c o) ii)(0) - i(w)[k0)(0)10 (X 0)]1
no2D. io ( a))

(A.280)

Since i0(0) = 0 [Abramowitz and Stegun, 1970] then

0 = B[-i o (w)ko(0)] (A.281)

Since k' (0) is undefined [Abramowitz and Stegun, 1970], we take

B = 0 Applying the second boundary condition (Equation

(A.91))

W(O)) = Ca(X, Z = 1, s) = Cm(X, s) (A.282)
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we get

Cm(X, s) = A io(o) - 2i°(°)) y2[ k0 (o) i( - ((o) k0(C) X, ý)dC
no)2D, i, 0 () ()

2[ko((0 ) io(°)) - io ((0) ko(o)]( ) X, )d
IMO9 2D. io (0)

(A.283)

Thus,

A S) (A. 284)io (•

So, Equation (A.277) becomes

W(2.) =. C(X, S) io(dC (A25

io ( ()) 0() cOD, •' (

Cm(X, S) 1 ,
io(0 ) 1 (Z)

io 0(co)
- 2i°(() 2[ko(o)io(C) io(w)ko( (X, )d (A.286)

_ 2[ko(a) io(Z) - io () )] (2o2 io()) FA(X, ()dI
1(o) 2D. io (0)

Recall, Equation (A.145)

Ci (X, T) =uz1 C (X, Z, T) dZ (A.145)

and W(z) =C(-z / (0) = (2 8(Z) where 2 = C0Z Taking the

Laplace transform of Equation (A.145) with v = 3 , we get

(X- s 3 jzW () )z (A.287)
Cm(X, s) = 3 C(xZ, s)dZ = o--W-A-5
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Substituting the general solution, W(i) (Equation (A.285)),

into this expression gives us

-3 C(x, s)
( s 3i0-0) F io

(A.288)

3*7i2 g(i, )f(X, C) dCdi

To determine the first integral, we use the following

homogeneous differential equation:

j2 d2io(i) di (i) _ 2i OM = 0 (A.289)

d&2  di

So,
j 2 i o ( ) = 2 2 -d2 i o ( • + 2 d i o ( ̂

dj2 +2(A.290)

Integrating both sides of this equation gives us

r2- d 2i() OM dio di)
2 i°0 (z) di = io2  Vo di + 2F di di (A.291)

Now, using integration by parts on the right-hand side of this

equation yields

•o 2 i(£ d= £2 di°(i)d O- 2Jo di(£d +d 2f di()dd (A.292)

2i2 ii(2d di 0 dio(M dio

d2 di r 0 (A.293)
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or

j2i( 02= 1o (0w) (A.294)

Thus, Equation (A.288) becomes

- ~3C. (x,s) ., (02 )
Cý (X, s) = 0) 3 ()3 W) [ (o W

(A.295)
-3 2•• 2 g (i, C) •.(X, C) dC di

- O 5De

CO io ((o) OSD, 
M

Now we solve

0'z2 g(z, ý)dz = J"2 g(z, •)d~ z + fz2 g(4 , •)d (A.297)

_ 2ý[ko(w) io()- io)(ko(O)] Jk(, i((C))
71 io (0 z)

(A.298)

+ 2 2 io(C) (i2

= 2C2 [ko(w) io(•)- io(( ) ko( )] JtZ2 io(ý)d&
7 io (co)

2 C 2 i0 (0) ko (Co) 22 2 2 i0 (C) io )

+ 7C 1o(0 o6)&o k(06z )&

(A.299)

From Equation (A.294), we know these integrals (similar

derivation for ko(l)). Thus, Equation (A.297) is
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Jz~ g2, &) =f 2 C2 [k (co) i0 () i0(, a) k 0 (C] [ý2 if()
g C xL io ((w)0

+ 2 C2 i [ o 0)102 if ( ) - 2 if,) (A. 300)

2 C~2 i 0 (0) i(o) [02 ko (w) - 2 ko(~)
xL i (CO))

Collecting terms and simplifying,

wk 2 K4i 0 (O3(() io2 4 if ( O3) k o(

2 ý2(22 i 0 (ý)if (0) ko(() 2 ý i (4) ko (CO) if

+ 0 +

2~~ (0%2 - 0 i (o) [i ((0) k' (() - 2ý i i~ k 0( io()]k
7E i0 (() ))(0

(A .302)

+ 2(o %2 i0 (o [ko(0)) if (w) - io 0 3) k'( 0())
io ()
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Thus,

JZ2 gC,)d i ( O ) + 2(o2C2 10(C) (W[ko, io](o))
io (t0) (cx io (to)

(A.303)

2 C i () (0 + 2 0)2 2 io (C:) X
S2 

2 + - (A .304)

So, Equation (A.297) becomes

J-z2 g(•,•)di = ý2[io(() i] (A.305)

Returning to Equation (A.296), with Equation (A.305) substituted

in, gives us

C(X, S) 3C(X, s) °(to) 3 C0_2 i( M ( )d(A._306)
W( iX (CO) (o D i0 (0)

If we let =COA , then when C= , =0 and when

C=O0 , = So,

C,,(X s) = 3Cm(X,s) i((o) 3 Jf21 2 io(O) 1 F(X,•)wd{C O io (0)) 0)5D, io (CO)

(A.307)

or

C(X,) = 3Cm(X's)i°(o)0 3 f2[io(O) 1] F(X,4)d4(A.308)
oio((0) w2D. io (w)
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Using Equation (A.143)

s~m F.X) X a 2m + X -X
F.~ ~(X) - I a2 Fj(X)] (A.143)

we substitute in Equation (A.308)

sm-F. (X) = I a2 + I x + PF'•(X)x ax 2  x ax

3Z.i0 ( () ~ 3 132 [i0o)

Ciom(() (O o D. i 0 (0))

(A.309)

Rearranging and multiplying each term by X gives us

a2ZM+ _ xS I + 30 i•,(W) -X[Fm(X) + AFx. (X)
a)X2  ax do)(W))

3+ s j,,J2 ( io(aO)) 1)FI.(X,1 4)d4]+) De io ((0)

(A.310)

If we define

=s + 3 i ] (A.311)

where i0,(o) = i 1(CO) ,a spherical Bessel function of the first

kind, order one [Abramowitz and Stegun, 1970] and recall that

S = c02D, (Equation (A.102)), then

A-61



+ - xy = -X[F.(X) + Fj. (X)

(A.312)

+ 3P r2(i()o(4) - 1)F.(X, )d4]

The right-hand side of this equation can be further simplified

using the initial conditions C (X, T = 0) = F.(X) (Equation

(A.50), C.(XZ,T = 0) = F.(XZ) (Equation (A.52)), and the

dimensionless expression for the volume-average immobile region

solute concentration, CU (X, T) = ULZ--'C. (X, Z, T)dZ where

V = 3 (Equation (A.145)). Therefore, at time T = 0

F,•(X) = Ci(X,T = 0) = 3J C.(X,Z,T = 0)dZ = 3Z2 F(X, Z)dZ

(A.313)

Putting this expression for F,(X) into the right-hand side of

Equation (A.312) gives us

-X[F. (X) + 3P3J2 Jj (X, •)d4 + J_42 i. (ok,)F. (X, 4)d4ý42 F io (0)

(A.314)

-3pj4' F. (X, 4)dQ]

So, if wo define

(X, s) = -X[Fm (X) + io- ( io( (A.315)

then Equation (A.312) becomes

+ C. a xT- c = F(X, S) (A.316)
aX2 aX
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aan'a Fun,,,,tion. The Laplace transform of Equation (A.46)

together with the appropriate conditions for the various models

resulted in a common differential equation which is of the form

a2 + C XyCm = F(X, S) (A.317)

where the overbar indicates the transformed function and y and

F(X, s) were developed in the previous sections. Now assume

that Equation (A.317) has a solution of the form

-I x
Cm(X,s) 4 (X,s) e 2 (A.318)

Then, substituting this into Equation (A.317) yields
I 1

-x-x ) d(. d 2 +)X Xy/ e 2 X]= F (X, s) (A.319)d2 + -dX

Evaluating the first term of Equation (A.319) gives us

d _o_2 d de 2  ex do(A.320)

S0 + (A.32o)

d 1[ e-x - x
-X 4 0 e 2 + e- 2 (A.321)

I d -2 d- o
4 (2 dX d + 2  (A.322)

_x 20 d1 0de 2 + x do + -i x d e (A33
---- 2 X 2 X CMi x- X2 CMd dX 1A3)

Ie-!x I -x do + -x d 20 1 1 x do
= o 2 - e 2 X _ e 2 2 e 2 _ (A.324)
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So,

_ __xx

d doe 2 _ d2  1 x do I 1
dX X e dX + -- e 2 (A.325)

Evalutating the second term in Equation (A.319) gives us

- x
dX dee 2 x•• do I x -x dO

de _ 2 -- O x ) + e d (A.326)

Combining both terms, simplifying, and inserting these terms

back into Equation (A.319) results in the following

_ Ix d20 1 -_I x _ x -
e 2 - - e 2 - X y 0 e 2  = F(X, s) (A.327)

dX2 4

Ix
Multiplying each term by e2  gives us

d20 1 2x
dx 40 X y = e2 F(X, s) (A.328)dX2  4

or

dx2 { x + = e 2 F(X, s) (A.329)

We seek a simpler form of Equation (A.329), one where the left-

hand side has no constants in it. Therefore, we define

y = C X + - (A.330)

where C is a constant. Thus, we rewrite Equation (A.329) in

terms of y, and define 4O(y) = O(X) Therefore,
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dO _ d4b dy d4rc] d= ( cd1
dX dy dX dy (A.331)

d' = ( d (d =d y (dd (Cd) dy = C2 d42
&2dX- = - - = Cy d-y - C-v (A.332)

Substituting this expression back into Equation (A.329) yields

-= e I (A.333)
dy2 _'0(C) ~C 4y)

Multiplying each term by 1 / C2 gives us

2(1> ~~[ y 1 1!
d ,iY S1 (A.334)
ay Y- - 0 - o[ =J F ( 4y

We want y / C3 = 1 , thus C = ./3 Therefore, Equation

(A.334) becomes

d2(1 2 2 f'4y
2e , S (A.335)dy I 4y

where (D is now a function of y and s.

We now look at the Laplace transformed boundary condition at

the dimensionless well radius (Equation (A.55)) and convert it

into terms of y,. Equation (A.55) implies the following:

dC. (X., s) = 0 (A.336)dX

where Cm (Xws) is the transformed function. Assuming a

solution exists in the form of Equation (A.318) then, Equation

(A.336) becomes
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d O(X, s)e-l x de-X d e-xA.337)

dX v dX dX~

--1x d• _ 1 -e x
= I 2 d (A.338)dX 2

=e 2 X( -K (A. 339)dX 2

At Xw,

"dO(X, 0 (A. 340)

Suppressing the S dependency, Equation (A.339) is now

e I ____ _oX, 0M. 0 (A.341)dX 2

1,

We know that e 2 does not equal zero. Therefore,

IO(x.,) + d-(X)- 0 (A.342)
2 dX

If we define y. = y"'[Xw + I / (4y)] and

'D(Yw) = O(Xw) = O[Y" / (Y"'3) 1 / (4y)] then the second term in

Equation (A.342) is

_O ( Xd- y _~ d( y

4) (A.343)

Thus, the boundary condition at the dimensionless well radius

(Equation (A.342)) becomes
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- (Y.) + Y, - (y.) = 0 (A.344)
2 dy

Now, we look at the boundary condition at a dimensionless

radius of the initially contaminated zone (X.). Recall the

boundary condition at X., Equation (A.54), which implies

Cm(X., s) + C (X., s) = 0 (A.345)
dX

where Cm is the transformed function. If we assume a solution

of the form of Equation (A.318), then equation (A.345) becomes

-s x. d (X. , s) e2 10•(X., s) e 2 + -= 0 (A.346)

Again, suppressing the S dependency yields

-iX. -ex. d4(XM) I -- x.

e 2 -(X.) + e 2 e 2 (X.= 0 (A.347)
dX 2

.e-. O(X.)+e = 0 (A.348)
2 dX

- I x. [+d o M )
e(X.) + = 0 (A.349)

-- X.
We know that e 2 does not equal zero. Therefore,

I d(X=) + = 0 (A.350)
2 dX

If we define y. = 13 [X. + 1 / (4'y)] and

c(Dy.) = O(X.) = 0[y. / (y"/3) - I / (4y)] then the second term in

Equation (A.350) is
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dO(X.) dO D
1_ 4 {J dy-dO(y. 3  (A. 351)

dX dy Y 3  dX dy(A31

Thus, the boundary condition at a dimensionless radius of an

initially contaminaLed zone (Equation (A.350)) becomes
1I

+ y3 + = 0 (A.352)

We now seek the solution to the following nonhomogeneous

differential equation (Equation (A.335)):

d2 D 2edY2y 31 4 - •F y1--- Yjs y, < y <y.

(A.335)

subject to the following boundary conditions

0(Y.) + ! d (y3) - 0 (A.344)2 dy

1 d(D(y.
!4 (y,) + y - = 0 (A.352)

2 dy

Recall Equation (A.330) where C = 'Y/3  That is,

y = y3x+4] (A.353)

Also, recall

O1(y) = V(X) = I (A.354)

A3 
4y
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Then Equation (A.335) becomes

, -3 ) J (y,s) Yw < Y < Y.

(A.355)

We kn.w the general solution to Equation (A.355) is of the

form

(D(y) = CI 4(D (y) + C2 4)2 (y) + I3P (A.356)

where C1  and C2 are constants, 4) I (y) and 4)
2 (y) are the

complementary solutions, and 4)P is the particular solution. We

also know that 4),(y) and 4) L(Y) must satisfy the boundary

conditions and are of the form

(DI(y) = A Ai(y) + B Bi(y) (A.357)

02(y) = CAi(y) + D Bi(y) (A.358)

where A,B,C,D are constants and Ai(y),Bi(y) are Airy and

Bairy functions, respectively [Abramowitz and Stegun, 19701.

The approach we take to find the solutions to Equation

(A.356) is a Green's function technique which is of the form

(D ( (y) (D2 (TO)

Y < TI < Y.

g(y, 1) = (A.359)
P) (-q) W (ý 0 (TV

p(1-)WV-[4 4- 2 ](fl) Yw < ' <Ay
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where p(11) is the coefficient of the first term in Equation

(A.355), which is equal to one, and W[-) 1 ,,b 2 ](T)) is the

Wronskian of (b, and 0 2 -

To find one solution we apply the boundary condition at y..

That is,

- 4,(y,) + !½dc1l
0 -y3 (yY,) = 0 (A.360)

2 dy

1 ~ dBi 1- [AAi(y,) + BBi(y.,)]+yi A-(y,,) + B-(y,) = 0 (A.361)
2 dy dy

[1.~ ~ -dA d]Lf[
A[- Ai(y) + y'-d-- (y,.)] + B - i (y-. y (y,) = 02J''[ 2 dy

(A.362)

Solving B in terms of A yields

B -A -Ai(y,) + -i y (Yw)

I 1 Bi(y,) + y' dBi( ] (A.363)

Therefore,

[=AI Ai)yA[[ 1 _dAiAiy. + dyy- (y")

(I (y) A A~i(y) - A 2 )] Bi(y) (A.364)I Bi(y,,) + 7 (d.)
2 -dyy~w

To find the second solution, we apply the boundary condition at

y.. Thus, we have

I @2Y.) Y•d(1D
Y 3 -2 (y. 0 (A.365)
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1 [CAi(y') + DBi(y.)] + Y3[C di(y.) + dD i (y.)= C (A.366)

C[ Ai(y.) + y' ' (y.) + D Bi(y.) + y' dBi(
2 y = 0 A.367

Solving D in terms of C yields

= -C •Ai(y.) + -y -(y.)
D2 dy di(A. 368)

Bi(y.) + y3 -()

Therefore,

1 A~y, + ,•dAi
A(y.) + y-dy (Y.)

c, 2 (y) CAi(y) - C [Iy. 1 dBi y Bi(y) (A.369)

2dyd~

If we define the following operators:
11Ai~,•)+ - dAi

G[Ai](y,,) = - I Ai(y) + (y,) (A.370)
2 dy

Bi~w) T]dBi
G[Bi](y, ) = - Bi(y,) + y3 - (y") (A.371)

2 dy

1 A~y) -7 dAi (.
H[Ai](y.) = Ai(y.) + y (y) (A.372)

2 dy

I~~ ~ B(yy.+)•dH[Bi](y.) = Bi(y.) + y (y.) (A.373)

2 dy

then Equations (A.364) and (A.369) become

01(y) = AFAi(y) - G[Ai](y),,) Bi (y) (A.374)
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(D 2 (Y) =CAi(y) -H[Ai](y.) Bi (y)] (A. 37 5)
1 ~H[Bi](y.) I

Now we seek the particular solution to Equation (A.355)

That is, we construct the Green'Is function (Equation (A. 359))

First determine the Wronskian:

W[O1 iCD2 ](y) = 01 (D2 (A.376)
1 0 1 D21

or

AAi (y)- G[Ai(y. Bi (y -[,Y H[Ai)(y. ) Bi (y)
[0 'D]( ) IG rB](., 1 H[ Bi J( y.)

A[A'i'') G[Ai](y.) 1~y C[A'i(y) - H[Ai](y.) B'i (y

(A.3'77)

So,

w[401, 021(y) ACt Ai(y) - [i(,)Bi(y) M~(y)- Ai(.Bi(y
L G [Bi ] ( y) it H[Bi](y.) ''

-AC A'i (y) -GA]y B'i(y i) - H[Bi](y.) Ji(y
G [Bi]I(y,,) iti]yý

(A.378)

-AC{IAi (y) A'i (y) - i y H[Bi](y.)Bi()-Ai() G[Ai](y.) y

_________y, H[A](y) ______

"+ G[Ai](y.)HA]y) Bi (y) B'i (y) - Ai (y) A'i (y) + A'i (y) H[i(. Bi(y)
A[i](y) G[Ai](y.) H[A[y) B]y)B'iy)

" i~)G[Ai](y.) B'i (y) - G[Bi](y.) H[Bi (y')1 iy '~)
C-[Bi](y.) GB]y, [iy)

(A. 379)
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Simplifyinc_ this expression gives us

= C u'B' "G [Ai](y,,) _H[Ai](y.)1

W[000,2] (y) =AC Ai(y)B'i(y) G[Bi](y,) H[Bi](y.)

(A.380)

- Ali(y) Bi (y) G[Bi](y,,) H[BAi]I(y.)II

=ACE G[Ai](y,.) _H[Ai](y.) lWrAiB]y (A31G[Bi](y,,) H[Bi]¢y.) '

We know that W[Ai, Bi](y) = 1 / [ [Abramowitz and Stegun,

1970]. Therefore,

0[ AG[i](y.) H[Ai](y,) I (A.382)
WG[Bi](y,) H[Bi](y.) 7 "

Thus, the Green's function (Equation (A.359)) is

01 (Y) 02 (TO
P (TO)W [ , ] ) YD f (D2 < y*

g(yT) = I (1) 4D2 (Y) (A. 383)
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Thus,

A. Ai(y G[AI](y_ BiFy]CA(n H[Ai](y.) B,(i)
A[A(Y) G[BiJ(y,.) By)JLAl)-H[Bi](y.,)

AC[G[Ai](y.) H[Ai](y.)1 IACG[Bi](y.,) H[Bi](y.) 7

g(Y,11) =

A A (1)G[Ai](y.) Bi (i) C Ai (y) -___ H[i( . 1 yAAi() - Bi(Y) H[Bi](y.)

AC[G[B i ](y.) ___________I

G[Bi](y,) H[Bi](y.)]!

(A.384)

Simplifying gives us

1c[G[Bi](yý)Ai(y) - G[Ai](y.)Bi(y)][H[Bi](y.)Ai(71) - H[Ai](y.)Bi(11)]

G[Ai](y.)H[Bi](y.) - G[Bi](y )H[Ai](y.)
g(y,rT) =

1t[G[Bi](y.)Ai(11) - G[Ai](y.)Bi(1q)][H[Bi](y.)Ai(y) - H[Ai](y.)Bi(y)]
G[AiI(y. )H[Bi](y,,) - G[Bi](y. )H(Ai](y.,)

(A.385)

where the top expression is defined for the interval y _• II _< y.

and the bottom expression is defined for the interval

Yw < t •<Y-

We now need to verify that the nonhomogeneous boundary-value

problem (Equation (A.355)) together with the boundary conditions

(Equations (A.344) and (A.352)) has a unique solution. We know

that a unique solution exists if and only if the corresponding

homogeneous problem together with the same (zero) boundary
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conditions has only the trivial solution [Ritger and Rose,

1968:439]. In the case when the homogeneous problem has only

the trivial solution, we shall obtain a Green's function of the

form of Equation (A.359) . That is, there will be no nonzero

complementary solution. To determine if a trivial or nontrivial

solution exists we will use the Maximum principle [Protter and

Weinberger].

For the moment, let b(y) denote the solution to the

homogeneous differential equation with zero boundary conditions.

We claim 4'(y) Ž 0 for all yw, < y ! y,. Suppose, for

contradiction, that there exists some y, in the interval [Y.,Y*]

such that 4D(y,) < 0 Without loss of generality, suppose

that the minimum occurs at yl. We will consider cases. Case 1:

Suppose Y. < Y1 < Y., then having a minimum at y, implies

4 "(yl) Ž 0 by the Maximum Principle. Using Equation (A.355)

(homogeneous case), 4"(Yl) = Y( 1(y 1 ) < 0 , we get

"(Yl ) < 0 and -2"(!1 ) Ž 0 which is a contradiction.

Therefore, (D(y) does not have a negative minimum in

y, < y < y.. Now suppose Case 2 Y1 = Y . By the Maximum

Principle, then ( '(y,) 2 0 Using the boundary condition

(Equation (A.344)) 4 '(yw) = (1 / 2)4D(yw) < 0 , we get

V '(y,) Ž 0 and 4)'(y,) < 0 which is a contradiction. Thus,

Y1 * Y, and (D(y) does not have a negative minimum at y,. Now

suppose Case 3 y1 = y. . By the Maximum Principle V'(y.,) : 0

Using the boundary condition (Equation (A.352))

'(y.) = (-I / 2)0(y.) > 0 , we get V '(y.) 0 and V'(y..) > 0
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which is a contradiction. Therefore, the original assumption

that there exists some y, in the interval y, _< y !5 y. subject to

4D(yl) < 0 is false. Hence, Ob(y) > 0 for all y in the

interval y. < y < y..

We claim (DZ(y) _< 0 for all y, :- y !5 y.. Suppose for

contradiction that there exists some Y2 in the interval [y,, y.]

such that 4D(Y2 ) > 0 Without loss of generality, suppose

that the maximum occurs at Y2 " We will consider cases. Case 2:

Suppose Y, < Y2 < Y., then having a maximum at Y2 implies

0/"(y2•) -0 by the Maximum Principle. Using Equation (A.355)

(homogeneous case), 4D"(Y 2 ) = Y2 (D(Y2 ) > 0 , we get

4("(y 2 ) !5 0 and 4b-"(Y 2 ) > 0 which is a contradiction.

Therefore, (D (y) does not have a positive maximum in

Yw < Y < Y,. Now suppose Case 2 Y2 = Y . By the Maximum

Principle V '(y.) <- 0 Using the boundary condition

(Equation (A.344)) (ye) = (I / 2)'b(yY) > 0 , we get

4D'(yw) > 0 and cb'(yw) 5- 0 which is a contradiction. Thus,

Y2 # y, and (b(y) does not have a positive maximum at Y.. Now

suppose Case 3 Y2 = Y* By the Maximum Principle "(y.) >- 0

Using the boundary condition (Equation (A.352))

'(y.) = (-I / 2)4(yJ) < 0 , we get 4V'(y. ) > 0 and V'(y. ) < 0

which is a contradiction. Therefore, the original assumption

that there exists some Y2 in the interval yw, - y ! y. subject to

D(Y2 ) > 0 is false. Hence, 4O(y) !5 0 for all y in the

interval yw -< y -< y*.
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Combining the two claims, we see that O(y) ! 0 and

O(y) > 0 This implies 4D(y) = 0 for all y in the interval

y. ! y • y. and in fact, this is true for all choices

0 < y, < y. < - of y, and y.. Thus, we have a unique solution

and we now know the general solution to Equation (A.355) is of

the form of Equation (A.356). However, Ritger and Rose have

shown that in the case when the homogeneous problem has only the

trivial solution there exists no complementary solution [Ritger

and Rose, 1968:439-440]. Thus, the general solution to Equation

(A.355) is of the form

4D(y) = l[' g(y, 11, s) 911(, s) dri (A.386)

Since

y 3 X (A.353)

4(y) = O(X) (A.354)

then

I1 I
S= Y + di = yT d4 (A.387)

Thus, Equation (A.386), together with the right-hand side of

Equation (A.355), becomes
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O(X) = .+ + s,] [) + -+ f 7) y

(A.388)

=x. + 1 p + ] - 1

= gJ y [X+ 4y 4y] e4 - (4, s) d4

(A.389)

4x (' X+ y!' + sy'e' (4, s) d4 (A. 390)

x. 4 yy 4+4-

Since Cm(X,s) = O(X,s)eo2  (Equation (A.318)), then

Cm (X, s) = e2 2 g y! [X + , [ + ), y3  e 2 F(,4s)dg

(A.391)

If we define

h(X, ~,S) = g(3x + 4y'], y3[ + ] S) (A.392)

then
1I x 1 it

-!xpx. -!

Cm(X, s) = e 2 jx b(X, t, S) y 32 F(t, S) d4 (A.393)

Substituting in the constructed Green's function (Equation

(A.385)) gives us
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C.M(XS)={
G[Ai](y,)H[Bi](y.) -G(Bi](y,,)H[Ai](y.)

{( + ] 3[ + e2•(4, s)d4G[Bi](y,)H[Bi](y.)Ai Y[X + ] "(Y'f1 +

-G[Bi](y.)H[Ai](y.)Bij(7X ++ 4- .. e 1 ý-

4y 4yX~
[([X+ ][ + .]3e24 F(, s)d4

+G[Ai](y,)H[Ai](y.)Bi X + 4-- I "'Y +-

w ~ L 4' 4)X~ [-G[Ai](y,)H[Bi](y.)Ai (Y[X + i) Ai(Y[4 + Ie ,s)d

+G[Bi](y.)H[Bi](y.) Ai [X + 4.(' + 1

-G[Ai](y,,)n[Bi](y.)Bi (Y 4y J. Biy[ + -])e4 F( ,s)d4

+G[Ai](y.)H[Ai](y.)Bi Y3[X + + 1)Jx Bi( yA[ + -])-e2 F(ý,s)d}

4y 4

(A.394)

Model Formulation: Extraction Well Off

If we now consider turning off the extraction well after a

certain period of time, say t , such that Qw = 0, then the

mobile region dispersion coefficient, D, = 0 (Equation (A.8)),

and the molecular diffusion coefficient, D', becomes the
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dominant transport mechanism. As a result, Equation (A.2)

becomes

aC'(r, t) _ I r aC'(r, t) O_ Rý. aC'(r, t)

a t RmL r r [(r Dr I R m (A.395)

Recall that

-- A (A.4)

OmRm

Then, Equation (A.395) is

aC' (r, t) _D: 1 aEraC'.(r, t)1 in (r, t) (A36oat Rm r r r r & (A.396)

We seek a dimensionless form of Equation (A.396) . Thus, as

before, we develop dimensionless variables using similar

techniques when the extraction well is on. Although the

techniques and the resulting form of the expressions derived in

this section are similar to the pump on case, notice the

different meanings of the dimensionless variables defined. If

we define

X = A r (A.397)

T = Bt (A.398)

where A and B are constants, X and T have the same meaning as

the variables defined in Equations (A.42) and (A.43), and recall

C'0(,t
C. (X, T) = C M(r,t (A.15)

C (X,T) = C'(r,t) (A.16)
C0
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where C' is some initial maximum of C'(r, t = t) and

C'(r, t =t), where t is the time after the extraction well has

been turned off, between r. _< r _• r., then

C. (r, t) = C'(XA 'T) C C. (X, T) (A.399)

C'r,t) = T)= C' C,(X,T) (A.400)

and

Wm (r, t) = C m (X, T) dT = _a (X, T)•C'r~t _C" - =C"(B) (A.401)
&t 0 - dt 0 aT

aC'm (r, t) = WC (X, T) dX = Cm (X, T) (A) (A.402)

S0 Ax dr - aX(A

aC'(r, t) XC" WC.(X, T) dX W,, c (X, T)
r ' -- 0 C" X (A.403)

ar A aX dr 0 ax

a= (rC°Xm X j (A, 404)

= , a( X (X,T))dX (A. 405)0 a:••x ax ---dr45

S a X aC X T))(A) (A. 406)

aC j(r,t) = C ac ., (X,T) dT - C aC,,(X,T) (B) (A.407)

at 0 dt
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Substituting these expressions into Fquation (A.396) gives us

BC' WC.(XT) _ D' A C. a (X _C(X,'T))A

DT R.Rm X 0  oX

(A.408)

-B C' ci (X, T)
0-T

Dividing each term in this equation by B and C" yields

aCn,(X, T) -D' A2 I a D C., (X, T) dC r-(X,T)
Rm -- X X~ ax aT (A.109)D•T R., B X o-)XXoT A 09

We want
DP A 2

0 = 1 (A.4410)

R. B

So,

A Rm (A.411)
0

In order to determine A and B uniquely, we seek a second

equation. Recall Fick's second law of diffusion describing

contaminant transport within immobile regions (Equation (A.26))
W' OC (r, z, t) = D: e' ) 11 Cp (r, Z, t)]

Rim at ZU-_ aZ I-z 1 0 < z < a (A.26)

and Equations (A.28) and (A.44)

Ca(XZ,T)- C'(r,z,t) (A.28)
0C'

z
Z =(A.44)

a

Then

C"(r, z, t) = C4-, a Z, = C" C, (X, Z,T) kA.412)
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So,
a rz t C, (X, Z, T) dT Wg, (X, Z, T)(B(A43

Cg:r z, t) = CO" (B) (A 413

at OT dt 0 T

aC' (r, z, t) _ aýC (X, Z, T) dZ _ C. (X, Z, T) ('
z . a % = CO -- (A.414)

az0 z dz 0 ka,)

zU-1 = (aZ)u-" = au-1 Z-'u (A.415)

Substituting these expressions into Equation (A.26) gives us

RirCB aC. (X, Z, T) D' a [au1Z-C C X ,T ]

=a'- ZZ1 CZ [Z a dz

(A.416)

We -Z-a [)Zau-I Zd-IC ,aC. (X, Z, T) I1

a- ZZ C 0Z a] a

(A.417)

or

oCr a .(X, Z, T) _ a2 ± " [C. (X, Z, T)RimC',B -_ CCI-zU (A. 418)0Ta 2 zlý1- 0Z [zI I
where Equations (A.416), (A.417), and (A.418) are defined over

the interval 0 < Z < 1. Dividing each term in this equation by

Rim, C', and B yields

aC.(XZ,T) _ Da_ I 1 [ZU-1 aCa(X'ZT)] 0 < Z < I
OT Ri B a 2 Z-C JZ 0Z

(A.419)
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Again, we want

D = 1 (A.420)

Rim B a2

So,

B-D'
B C2 (A.421)
R. a2

Substituting Equation (A.421) into Equation (A.411) produces

RB R D
A - IR B. - D Ri' a2  (A.422)

or

A R. D: (A.423)a R ii

Thus, Equation (A.397) becomes

r D: R.a D RX (A.424)

and Equation (A.398) is

T= D~.t
RT a2  (A.425)

Using Equations (A.421) and (A.423) results in the dimensionless

form of Equation (A.409):

WCm(XT) _ I x W.Cm(XT)1 a- c (X,T) (A.426)

aTX__X__X 1 T (A. 426)

I (X,T) +Cm(X, T) Wi (X,T),
X aX aX2 aX AT
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or

aC (X, T) = a 2C. (X, T) + I C. (X, T) _ C. (X, T) (A.428)

SjX 2 X iTX G

Similarly, if we substitute Equation (A.421) into Equation

(A.419) we aet a dimensionless form of Equation (A.26)

aC.(X, Z,T) _ I a [ZU_• [ C. (X, Z, T)] 0 < Z< I (A.429)
-YT Z-I aZL az

Taking the Laplace transform of Equation (A.428), and

suppressing the (X,T) notation, gives us

iiZ ) =) ( IcX2D+L aCX I paCi)T (A.430)

or

sm C. C(X, T = T) +S' T ax2  Xax

(A.431)

- I~~m- C1 x,T = T)

To attain a form of the solution when the extraction well is

off, we will assume that the arbitrary initial conditions are of

the same form as the initial conditions when the well is on,

except for two significant differences. First, the initial

conditions are at some later time, T = T , rather than at

time T = 0 This time (T) reflects the contaminant

concentration in the mobile and immobile regions at the time the

extraction well is turned off. Thus, the initial conditions at

Tare the terminal conditions for the pump on. Second, as
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previously mentioned, the dimensionless variables, X, X,, X.,

and T have a different form in comparison to when the

extraction well is on but have the same meaning. From Equation

(A.424) we have

aD R• (A.432)

X.=r_. ID.' R.
a, = R5 (A.433)
a R

Thus, the initial conditions are

Cm(XT = T) = F.(X) X,, < X < X. (A.434)

Cý.,(X,T = T) = F.(X) X, < X < X. (A.435)

Cm(XT = T) = Cj(X,T = T) = 0 X > X. (A.436)

where Fm(X) and F• (X) are dimensionless arbitrary initial

concentration conditions in the mobile region and immobile

region, respectively at time T. As before, the diffusion

models require the following additional initial conditions to

describe transport within the immobile regions:

C.(XZ,T = T) = F.(X,Z) X,, < X < X. (A.437)

C. (X,Z, T = T) = 0 X > X. (A.438)

where F. (X, Z) is the dimensionless arbitrary initial

concentration condition in the immobile region of a certain

geometry at time T. Again, Equations (A.434), (A.435),
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(A.436), (A.437), and (A.438) state the initial conditions,

which assumes contamination of mobile and immobile regions at

some arbitrary concentration within a cylindrical region of

dimensionless radius X. at time T.

The boundary condition at the well for the pump on case is

still assumed to be applicable when the pump is off (Equation

(A.55). That is, we assume that the concentration inside the

well bore is equal to that entering the well from the adjacent

surrounding media. Thus,

S(X., T) = 0 (A.439)

Similarly, the boundary conditions within the immobile

regions of layered, cylindrical, and spherical geometry remain

as stated in Equations (A.56) and (A.57). That is, these

equations state that the concentration within an immobile region

of certain geometry is zero at the center and is equal to the

mobile region concentration at its outer boundary, respectively.

W.(X, 0,)= 0 Xw < X (A.440)
az

C.(X, Z = 1, T) = Cm(X, T) X" < X (A.441)

The outer boundary condition is modified to allow for

leakage of the contaminant, since molecular diffusion is assumed

to be the dominant mechanism responsible for transport. Thus,

we assume that the total mass flux outward at the outer boundary
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of the contamination area (r.) is proportional to the amount of

the contaminant mass present in the mobile region.

Mathematically, this boundary condition is represented as

D' k = kC•(r. t) (A.442)

or

D' aC'
-0 M (r., t) - C'(r., t) = 0 (A.443)

k r

where k is a proportionality constant. Recall Equations (A.15)

and (A.424)

Cm(X,T) = C ,m(r't) (A.15)
0c,

X= r DRm (A.424)
a R

If we nondimensionalize Equation (A.443), term by term, we get

C'(r., t) = C' Cm(X.,T) (A.444)

aC'm (r.,t) 0 C- (X., T)dX = acr (XT) [ D"R (A.445),)r 0 C0 aX 0• = " • D (A45

Substituting these equations into Equation (A.443) gives us

D' C" D'Rm R JC (Xý,T) A
k a _ C C.e(X, , T) = 0 (A.446)

a DA' Rm ax

A-88



Dividing each term in this equation by C" yields

D'1 D:R.m aC (X.,T)_C(X.Pir)= 0 (A.447)
k a aD " RC 

0X

If we define

SDR(A.448)

k a 0D"R

where E represents the coefficient of leakage of the contaminant

through the outer boundary, then the outer boundary condition

(Equation(A.447)) becomes

a-(X.,T)-C(X., T= 0 (A.449)

Now that we have established the governing differential

equation (Equation (A.428)) and the initial conditions and

boundary conditions, we will now go through the mathematical

formulation for each model.

Loeal Eqil�i�ium Model _LLYAL•. From Equation (A.428), if

is defined to be zero, and if we suppress the (X,T) notation,

then Equation (A.428) becomes

(Cm _ a2C. + I ac.1 (A.450)a)T a)X2 X a)X

Taking the Laplace transformation of this equation gives us

_(a2C)= X + I (A.451)
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or

a2• 1 asC C. C(X,T = T") = +

XaX
2  X ax (A.452)

Rearranging this expression yields
a2m +_ a1 C

--- + - s_ m = -Cm(XT =T) (A.453)

ax2  x ax
If we define

Y = S (A. 454)

and

F(X, s) Cm(X, T = T) (A.455)

together with the initial condition Cm(X, T T) = Fm(X), then

Equation (A.453) becomes

a2• I ac.
X2  + X aX YC- = F(X, s) (A.456)

agX2  + •Xx

Firat-Ohar Rat. Mohdal. Previously, we introduced the

first-order rate model. That is, the transfer of solute between

the mobile and immobile region can be described using a first-

order rate expression:

a)C" (r, t) ara-'(r t) _[C' (r, t) - C' (r, t)] (A.64)

We seek a dimensionless form of Equation (A.64) . Recall

Equations (A.15), (A.16), (A.424), and (A.425):

Cm (X,T)- C' (r, t) (A.15)
C0

A-90



( C' (r, t)
C. (X, T) - (A. 16)

a0
X [:R (A. 424)

JD'•D R.m

T= D't
R, a2  (A. 425)

Rewriting Equation (A.64) into dimensionless form yields

Ca(X,T) D _ a'[C (X,T - Ci (X,T) (A.457)
R a2  0R

Rearranging this equation gives us

aC• (X, T) _a' a2-X D' [C.(X, T) - Ci(X, T)] (A.458)

If we define the dimensionless first-order rate constant a as

'a2
(X = (A.459)

then Equation (A.458) is in the form as Equation (A.72):

acn(X,T) = a[Cm (X, T) - Cim (X, T)] (A.72)

Recall the Laplace transform equations of Equation (A.72):

I _V!) L((X[ICm - C~j) (A.73)

sCi -Ci (X, T = T) = oa(Cm- C) (A.74)
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However, notice that these expressions are now at time T =

rather than T = 0 Solving for C in terms of Cm gives us

=C. (X,' (A.75)

S+cz

Inserting this expression into Equation (A.431) and rearranging

results in

I C. S + =ps -Cm(XT =T)X ax s + a)

(A.460)

+ Cn(XT = P+c )

If we define

= + Oc) (A. 461)

and

F(X,s) = - Cm(XT = T) + DcmXT (A.462)

together with the initial conditions Cm(XT = T) = Fm(X) and

C (X,T T n) = F(X) we get

F(X, s) = -(Fm(X) + OkxF. (X) (A.463)

So, Equation (A.460) becomes

a + 1 a U UCm = F(X, s) (A.464)

-TX2 X ax
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Diffumlan lwidala. As previ.ously discussed, the transfer of

solute betwe-en the mobile and immobile regions may be assumed to

be governed by Fickian (Fick's second law) diffusion within

immobile regions of specified geometry [Goltz and Oxley,

1991:548-549]. Mathmatically, Fick's second law of diffusion

describing contaminant transport within the immobile region is

@C' (r, z, t) D_ D• U-I az, iC' (r, z, t) 0 < z< a
Ri-I 0 < z < a (A.26)

Recall Equation (A,429) which is the dimensionless form of

Equation (A.26):

)C. (X, Z, T) _ 1 [Z"- )C 8(XZT) 0 < Z <I (A.429)
irT Z•-' •Z L

which is valid for all the diffusion models. That is, u = 1,2,

and 3 Now we take the Laplace transform of Equation (A.429)

using Equation (A.437) (initial condition) and Equations (A.440)

and (A.441) (boundary conditions):

C.(XZ,T = I) = F.(X,Z) X, < X < X. (A.437)

W,(X, = 0, =T) = 0 X , < X < X. (A.440)

az

C.(XZ = IT) = Cm(XT) X, < X < X. (A.441)

So,

a - Z-l Z a-- (A.465)
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se. - C. (X, Z, T = T) = - (A.466)

a Z,-I aýz

sC, - F.(X,Z) z (A. 467)

thus

a -I sC. =- F.(X, Z) (A. 468)

The boundary conditions associated with this equation are

derived by taking the Laplace transform of Equations (A.440) and

(A.441) . Thus,

aC(X, Z = 0,s) = 0 X. < X < X. (A.469)az

C1 (X, Z = 1, s) = Cn(X, s) Xw < X < X. (A.470)

We seek the general solution to Equation (A.468) using the

boundary conditions (A.469) and (A.470) for cases of v = 1,2,3

(layered, cylinder, and spherical geometry, respectively). That

is, we seek

Ca = C., + Ce., (A.471)

where C8 is the general solution to the differential equation,

C., is the complementary solution to the homogeneous

differential equation, and C., is the particular solution to the

nonhomogeneous differential equation. Now we look at the case

where 1=1
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Lred Diffuajon. We first find the general solution

to the homogeneous problem. So Equation (A.468) becomes1 ( -)~
I a Z- U1 sC?! = 0 0 < Z < 1 (A.472)ZV-1 aZ O

If we define u = Cc, then Equation (A.472) becomes

Z a)I yZ' auZ SU = 0 0 < Z < I (A.473)

When 1 ) I , Equation (A.473) transforms into a second order

differential equation with constant coefficients:

-2- SU = 0  0 < Z < 1 (A.474)

The general solution of this differential equation is of the

form

u(Z) = CAUI(Z) + c 2 u 2 (Z) (A.475)

where C1 and c 2 are constants and uj(Z) is of the form

ui(Z) = em'z [Ritger and Rose, 1968:121, 129]. So,

m2e z - se = 0 (A.476)

emZ(m2 - s) = 0 (A.477)

Since emZ is not equal to zero then the auxillary equation is

m2 -S = 0 (A.478)

So,

m 2 = S or mi = i m2 = M (A.479)
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Thus,

u(Z) = Cie48z + C2e-4FS (A.480)

If we define

0) = 'S (A.481)

then

u(Z) = Cie M + C2e-Mz (A.482)

We now check this solution for linear independence to

determine if Equation (A.482) is the general solution to

Equation (A.474). Thus, we use the Wronskian, W[ulf u 2 ]. That

is, if W[u1 • u 2J # 0 then the two solutions, u, and u 2 , are

linearly independent and u(Z) is the general solution. Using

Equation (A.482) with u e = ez and u 2 = e-•z we get

u1  U 2  
e(O e-ag

W[U, u2 1] = - (A.483)

U U1 t)ez -o zU1 U2 e w

= -te-A e z -o(e z e-Oz = - (o = -2co # 0 (A.484)

Thus, U, and u 2 are linearly independent so u(Z) = cie + c2e-oz

is the general solution.

Now we seek the particular solution using a Green's

function. If we define U = C3  then from Equation (A.468), we

have the following nonhomogeneous differential equation
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a 2U

-- sU = -F.(X, Z) (A. 485)aZ2

with boundary conditions

S(Z = 0) = 0 (A .486)

U(Z = 1) = 0 (A.487)

Rewriting Equation (A.485) gives us

-- - o U . ( , Z)(A.488)

where CO = S (Equation (A.481)). We know the general solution

of this equation is of the form

U(Z) = AU,(Z) + BU 2 (Z) + Up (A.489)

where A and B are constants and Up (or CUs) is the particular

solution [Ritger and Ross, 1968:438]. Based on the homogeneous

solution, we know that U1 (Z) = cleAz + c2e-Cz satisfies the

boundary condition aU1(Z = 0) / aZ = 0 That is,

wcle (0) - Oc 2e-0(°) = 0 which implies c1 = C2  So,

U1 (Z) = cle' + cie-C (A.490)

If we choose C, = 1 / 2 (without loss of generality), then

Ul(Z) e - cosh cZ (A.491)2

We also know that U2 (Z) = c3ez + c4e-DZ satisfies the other

boundary condition U2 (Z = 1) = 0 Thus,
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U 2 (Z = 1) = 0 = c3e(M + c4e-'0) (A.492)

so

C4 = -C3e2w (A.493)

Therefore,

U 2 (Z) = c3ez - c3e2o e-MZ (A.494)

= c3em[ewz e- - ea) e-09 (A.495)

=c3em[e®(z-') - e-(Z-)] (A.496)

or

U2 (Z) = c3e[-e(DO-Z) + e-((0-z) (A.497)

Since c3ew is a constant, let's choose it to equal -1 / 2

(without loss of generality). This gives us

U 2 (Z) = -= sinh(WlI - Z) (A.498)2

We now check to see if we have a trivial or non-trivial

solution using the zero boundary conditions for the homogeneous

case:

au (Z 0) - 0 (A.499)

u(Z = 1) = 0 (A.500)

This will determine the form of the Green's function for the

particular solution. We know Equation (A.488) with the above
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boundary conditions has a unique solution if and only if the

homogeneous problem (Equation (A.474)) has only the trivial

solution for the same zero boundary conditions [Ritger and Ross,

1968:439]. Recall, u(Z) = cleoz + c 2ez (Equation (A.482)), so

au (Z = 0) = 0 = Oxie M(O) - (e-'(o) = (0 - C 2 ) (A.501)

thus,

C, = C2  (A.502)

At the other boundary condition, u(Z = 1) = 0 , we get

u(Z 1) = 0 = Cie (i) + C2e-•l) (A.503)

c 2e-0 = -cie (A.504)

C 2  = -Cie2( (A.505)

thus,

C, = C2 = -cie 2 or c, = 0 (A.506)

so. u(Z) = 0 is the trivial solution.

Since we have a trivial solution we now construct the

particular solution using a Green's function which is of the

form [Ritger and Ross, 1968:440]

UI (Z)U 2 (•) Z < <I

P (0 Wt[UiI U2 1](0

g(Z, ') = (A.507)

UI (O)U2 (Z)

A0< 9 < z
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where W[U1 ,U 2 ](ý) is the Wronskian of U, and U2, and p(ý) is

the coefficient of the first term in Equation (A.488) . From

Equation (A.488), we see that p(C) - 1 Now we determine the

Wronskian:

= I Ul U21U = cosh OZ sinh e(I1- Z)
W[UL'U2] Uf U. Cosinh oZ -(ocosho)(I - Z) (A.508)

= -0O cosh co(I - Z) cosh OZ - (o sinh GoZ sinh (o(1 - Z)

(A. 509)

= -o0[cosh oOZ cosh O(W - Z) + sinh cdZ sinh o(I - Z)]

(A.510)

= -(0 cosh(COZ + 0(1 - Z)) (A.511)

- -Ocosh •0 * 0 (A.512)

So,

cosh oZ sinh o)(1-) Z < <
-o) cosh co

g(Z, C) (A. 513)

cOsr. (Lr sinh 0o(I - Z)
-(0 cosh (o

Therefore,

Up = Cap(X,Z,S) = -Jg(Z, )F.(X, )dC (A.514)
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Thus, Equation (A.471) is

C+ = Cac + A cosh (oZ + B sinhCw(I- Z)

(A.515)

- log(Z, C)F. (X, C)dý

or

C, A cosh (OZ + B sinh (0(1 -Z) + Cosh WZrshCI)F(X,)d
0) cosh (o

sinh 0)(i - Z) rz
+ )cosh JOcosh() F, (X, C)dý

(A. 516)

Now we apply the nonzero boundary conditions (Equations (A.440)

and (A.441))to find the constants A and B.

a . (X,Z= 0, s) = 0 = OAsinhCO(O)- &OBcosh (ol- 0)

+ (o sinh 03(0) rsinh (o( - )F. (X, C)dC

(0 cosh (0

_ ocosh osh(0)( sinh O(l - Z)Fa (X, Z)Z

(o cosh)(1O) IZSO

_ O•cosh J(0 - 0) 0 cosh((oC) F. (X, C)dC(0 cosh (

+ cosh(iZ) F.Z(X, Z)•0)cosh (0 Z = 0

(A.517)
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or

0 = -oBcosh w0 (A. 518)

So, B = 0 Now we apply the second boundary condition

C.(X,Z = 1,s) = C.(X,s)
(,) A cosh C()+cosh o(l) (1

C.M( s) = c sinh (o(I - C)F. M C)dC

(A. 519)

+ sinhF(01 -1) 1cosh(K) F.(X, C)dý
(OD.~ c o sh (0 O

CM (X, S)
So, A = c- (o Thus, Equation (A.515) becomescosh (0

Ca(X,Z,S) - Cm(X, S) cosh0Z- g(ZC)F.(XC)dC (A.520)coshc

Combining Equations (A.431), (A.434), and (A.435) we get

SC.- Fn,(X)= X +(A.521)

Now we need an expression for Cim. Recall Equation (A.146):

C?(X, s) = (X, Z, s) dZ (A.146)
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Substituting Equation (A.520) into Equation (A.146) we get

C(X,s) = -J'g(Z,ý)F.(X,C)dedZ (A.522)M S)cosh 0O

C(X, S) cosh WZ dZ- g g(Z, ý)dZ ]F(X, C)dC (A.523)
cosh0

cmoXs) sin 03 .

M sh c _ (Z, t)dZ) (X, ý)dý (A. 555)

Now we determine Jg(Z,W)dZ:cohWZsn °(01- 0 dZ
Jg(ZC)dZ = 4 Oh3~fh3

(A. 526)

+ ficosh (4 sinhh03 (l- Z)_

sinh 03Z sinh 03( -) + cosh 03ý cosh 03(1 - Z) (

-(02 cosh03 0 -c cosh(-) (A.527)

sinh 03e sinh 03(1 - )+ cosh 03c
2 +

-0)2 cosh 03 032 cosh 03
(A. 528)

cosh wC cosh 03(I -

032 cosh w

2 1 - (sinh 03 sinh 03(1 - + cosh 03w cosh 03(1 -(1) cosh o•

cosh W3+2
032 cosh w

(A.529)

2 [cosh(wý + (I- )) + cosh (A.530)
0)2 cosh03 032 cosh03
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So,

g(Z, ý)dZ = + cosh o1 (A.531)

Inserting this equation back into Ci(X,S) (Equation (A.525))

gives us

C?(X,s) = ih cOcosh2o 1 - cosh Jt)(X M )dC (A.532)

Now we have an expression for Cm(X, s). Using this equation

let's substitute it back into Equation (A.521):

SC. - Fm(X) - a2 + - Fim (X)] (A.521)

Thus,

aX2  XaX

CS Zm sinh 0) 12 ([1+ cosh (41F l(X, ý)ddj - Fi.(X)l

- cosh • coshWJ

(A. 533)

Rearranging this equation gives us the following

a
2

Cm 1 aC. Sm + _ sinh (0

i-X- 1 + a- -- --j) cosh (0 - [F.(X ) + PFj.(X )

riLs I-I + cashf1 M C) <
+0 2 cosh J (X

(A. 534)
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If we define

= sI + 0sinhc C (A.535)
CO) cosh W

and recall that s = C02 (Equation (A.481)), then we get

am -. = -[-F. (X) + PFi (X)

X Xax P- (A.536)

+•[oOLcosh a ) p(X,

The right-hand side of this equation can be further simplified

using the initial conditions C,(X, T = T) = F.(X) (Equation

(A.435), C.(X, Z,T = T) = Fa(XZ) (Equation (A.437)), and the

dimensionless expression for the volume-average immobile region

solute concentration, C1. (X, T) = UZ1'C. (X, Z, T)dZ where

V = 1 (Equation (A.145)). Therefore, at time T T

Fj(X) = C( X,T = ') = XC,(XZ,T = T)dZ = F3 (X,Z)dZ

(A. 537)

Putting this expression for Fm(X) into the right-hand side of

Equation (A.536) gives us

I ~ cosh0
-[Fm(X) + I3JFa(X, Z)dZ + h 1. (X, (A.538)

0 J' 0 cosho)

or

[Fm (X) + +Jicosh)F(,d w J0J. (X, 0dC1

(A.539)
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Thus, Equation (A.539) becomes

-[F.(X) + 0 cosh(c )F.(X, (A.540)cosh (o 0

So, if we define

F(X, s) =-[F. (X) + Icosh(4) F.(X, )dC (A.541)
L ~cash Ct0

then Equation (A.536) becomes

___m I •FC
ax2 ac.

-j + X X C. = g(x, s) (A.542)

Using similar techniques as in the above derivation when 1) - 1

we now seek the solution when 1) = 2

Cylindrial Diffusion. From Equation (A.429) we have

aCa(XZ,T) _ 1 W Z •Ca(X, Z, T)1 0< Z < I 0 < < (A, 29)
aT Z-' ZL Z

which is valid for all the diffusion models. As previously

derived, we now take the Laplace transform of Equation (A.429)

using Equation (A.437) (initial condition) and Equations (A.440)

and (A.441) (boundary conditions):

C.(X,Z,T = i) = F,(X,Z) X,, < X < X. (A.437)

ac.(Xz = 0,T) 0 < X < X. (A.440)
az

C.(XZ = 1, T) = Cm(XT) X,, < X < X. (A.441)

A-106



So,

a = Z•-. (A. 465)U - 0 z)O~1 ) = Zz_ (z C.
sC. - C. (X, Z, T = T) (A.466)

1z aZ ( a

sC. - F.(X,Z) a Z-,- jZ azj (A. 467)

thus

a ZU-_C - sCa = -F,(X, Z) (A.468)
Zi-I TZ ( IZ

with the following boundary conditions (Laplace transformed

functions of Equations (A.440) and (A.441)):

a C(X, Z 0, $) = 0 X,<X X< X. (A.469)

CU(X, Z = 1,s) = Cm(X, S) X, < X < X. (A.470)

We seek the general solution to Equation (A.468) using the

boundary conditions (A.469) and (A.470) for case of 1 = 2

That is, we seek

Ca=C~+ Cp(A.471)

where C, is the general solution to the differential equation,

Cat is the complementary solution to the homogeneous

differential equation, and Ca, is the particular solution to the

nonhomogeneous differential equation. For the case of U = 2

Equation (A.468) becomes
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11( F. = (X, Z) (A. 543).TZ --•-)

Differentiating the first term of Equation (A.543) gives us

[ Z a- +Z '] -ZsQ. = -F, (X, Z) (A.544)

or

a2 c I ac.

------ + w -s (C. F.(X,Z) (A.545)

If we define

S= OZ (A. 546)

W(a) C.(Z) = aC. (A.547)

where (0)2 = S (Equation (A.481)), then

a _ -- = (0o-- (A. 548)
az o) dZ ai

a2zý. a azý) = ) (W aW ) d =a• (0o W (0o =0 a (A.549)

Substituting these equations into Equation (A.545) gives us

a2_W (02 aW
2 ~ 2  2W=_. X

co= 2F+(X,) -F,(X,z) (A.550)

Multiplying through by 1 / 02 yields

a 2w I =w (x, 2)
_ + 1 W -(A.551)

A- 108



We now seek the complementary solution to Equation (A.551).

That is,

+ W = 0 (A.552)

which we know to be a modified Bessel function of order zero

[Abramowitz and Stegun, 1970]. Therefore, the general solution

to this homogeneous differential equation is

W(z) = CI W1 (%) + C 2 W 2 (Z) (A.553)

where W,(M) and W2.z) are of the form

W,(z) = A 1 0 (^) + B K0 (1) (A.554)

W2 (Z) = CI 0 (1) + DK 0 (1) (A.555)

where CIC 2 ,A,B,C, and D are constants and 10 (z) and K0 (z)

are as previously defined and are of the form

I() = (A.556)
k-o (k !)2

Ko(0 z) = 210 (z) ln^z + )2 1 +--+... + (A.557)
2= (k=1

To find the first solution, WM(z), we apply the zero flux

boundary condition (Equation (A.469)) to W1 (z) since Z = 0

implies z = 0 , thus,

= 0) = 0 (A. 558)
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So,

= 0 = A 10( = 0) + B Ko(z = 0) (A. 559)

=BKo(i 0) (A.560)

since K'(. - 0) is not equal to zero [Abramowitz and Stegun,

1970], we take B equal to zero. Therefore,

W,(i) = A 10 (i) (A.561)

Without loss of generality, let's take A = 1 , so

W(. = IoM (A.562)

We also know the second solution, W2 (i), to be of the form

W2 (i) = C I 0 (i) + D Ko (i) (A.563)

and satisfies the 'zero' boundary condition (Equation (A.470))

where Z= I implies z0 :

CI(XZ = 1,s) = 0 = W2(z = w) (A.564)

Thus,

0= C 10 (co) + D K0 (co) (A.565)

or

D - (A.566)KO (0O)

So,

W2() = C 10 C I 0 () Ko() (A.567)
KO ((0)
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Without loss of generality, let's take C = K0(o) Thus,

W2 (i) = KO(o)) (i) - 1o(co) Ko(,) (A.568)

Now we seek the particular solution (Ca.) to the following

nonhomogeneous differential equation using a Green's function:

__ 1 aW P. (X, i)

2w + W = - 2 (A.551)

First, we construct the Green's function which is of the form

WI 6Z) W2 (ý)

g(ZO) = (A.569)

W1 (C)W 2 6Z)

P(0W[w W!IW2](0) 0 < C < z

where W[W1 , W2 ](C) is the Wronskian of W, and W2 , and p(C) is

the coefficient of the first term in Equation (A.551) From

Equation (A.551), we see that p()) Next we determine

the Wronskian W[WIW2]:

i10 Ko(0)) 1.(i) - I(03) Ko(i)

W[WIW 2 1= (A.570)
11K 0()c1' I(i~) - 1o0) K' (i)

= Ko (0o)10 (ý) I' (z) - Io 1() (z) K' (z)

(A.571)
K- K (CO) 1o(6)o (1) + 1I(o({)Io'(1:)Ko(

= Io((0)[1'(i) Ko(i) - 10(i) Ko(i)] (A.572)

= o((0) W[K(),o 10(i)] (A.573)
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We know that W[K0 (z), 10 (z)] = 1 /z [Abramowitz and Stegun,

1970] . So,

w[w IW 2  = Io0)- (A.574)
Z

Therefore, the Green's function is

WI w(•)() W2 < < (0
Io(oO)

g(•,C) = (A. 575)
C WI (C) W2(C

o 10(O) 0 < <

C Io(M)[ Ko (() 1Io(C) - lo(0)) Ko (C)] < < <0

Io (o))

(A.576)

C 1o (C)[Ko (CO) 1o ( ) - 10 (Co) Ko ( )]

Io(o))

and

Cap(i) = -F0g, C)F(' 2 (A.577)

So, the general solution is

W(i) = C.(i)= AW,(i) + BW 2(z) -,ogC) )(X C (A.578)

A A10 (2) + B [Ko(o))1 0 (2) - 1o(0)Ko(i)]

10( ) [Ko(C) I - Io( ) Ko() ] F(A.579)
o2 "Z L Io(o ) J

- [K (o)) 1 0(2) - I°(o)) K (z2)] i:C 1(•) F( (X, C)dC
02 I0(0) 0
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To find the constants A and B we use the 'nonzero' boundary

conditions (Equations (A.440) and (A.441) where W(z) - C (Z) ).

Therefore, applying the boundary condition

= 0) - 0 (A.580)

we get

= 0 = A Io(0) + B[K(o() Io(0) - 10o) K(0)]

_ io(0) 2 1 w[K°( ) I°(o ) - I(w) Ko( )]F (X, C)dC

+ Io(0) {(0)[Ko(w)1 0 (0)_ I-o() Ko(0)]F (X,0)}+0 02 1o 0(0)

Ko ( 0o) 1o(0) - l((O ) K'(O)]
2 I(• I 0() (X, C)d

S[K°(0) )I°(0) - I°(o)) K°(0)] [(0)I(0)F (X, 0)1
W2 10 ((0)

(A.581)

Since 1'(0) = 0 [Al- amowitz and Stegun, 1970] then

0 = B[-1 0 (ow) K'(0)] (A.582)

Since [-1 0 ()0) K'(0)] does not equal zero [Abramowitz and Stegun,

1970], we take B = 0. Applying the second boundary condition

(Equation (A.441))

W(O)= Ca (X, Z =- 1, S) Cm(X, S) (A.583)

A-I 13



we get

X,s) A A1 0 (0))- fI(0) [Ko(,O) I(0 ) -Io(O)10 (o )] FK(X,, )d
(A) 2 10(o)

- [K°(°) I°(a)) - 10 (w)K°(i)] K O Io(;) F1(X, ý)dý
(02 1 (0))

(A. 584)

Thus,

A - (A. 585)10ot))

So, Equation (A.578) becomes

C.M(XS)
W(i) = M s) _ ( - Fog''. (X, C)d' (A.586)

Cm(X, S) 10(M
o (to)

I°(0 ) J21K((()0o -0 1(() Ko(,)] F(X, )dý (A.587)

f%2 o ((X)

O2 I1 (co)

Recall, Equation (A.145)

C,. (X,T) = 'Z)' C. (X, Z, T) dZ (A.145)

and W(z) - ,(z / c0) = Ca(Z) where z - OZ Taking the

Laplace transform of Equation (145) with u = 2 , we get

C(X,s) = 2 ZC.(X,Z,s)dZ = W(-Z)-Z (A.588)
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Substituting the general solution, W(i) (Equation (A.586)),

into this expression gives us

C.MS- 2 C.(X, S) 1 i)2di-
-c(x, s) ( 21 (x0 s) fi 0 (i)di•O Io j j g(, , ) C(x,) dCdi

(A. 589)

To determine the first integral, we use the following

homogeneous differential equation:

j2 d210o( j) +j dlo 0)_ 2&2 10 () di ) = 0 (A.590)
di.2  di

Multiplying each term by I / z produces

d21°(0 ) d1°(i) _i10 (i) = 0 (A.591)
Zdz2 + di

So,

i10(i dEI°(j) +d1 0 ) (A.592)
di2  di

Integrating both sides of this equation gives us

oWIo(i)di := rido I°(2) di + F dI°(i) di (A.593)d7 di

Now, using integration by parts on the right-hand side of this

equation yields

dro F o j+ I" j)(
fi~~idi= ~d1(i 0 - rd( )d,. + I0(i) (A.594)

FIo(i)dz di 0 d " di 0
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io ) di = i d (i W - 10(i) 0 + IOM ) = i d---i- 0 (A.595)0 di 10 10(z 10 dI(10

or

) = 0= (O) (A. 596)

Thus, Equation (A.215) becomes

Cim(X, s) = 2 C.1(X, s) 2-J 0  i g(i, •)F(X,)d di

(A.597)

2C.(X,slo), 2 s) CO
- O ° 0 (CO) W - -- g i, (X, )dC (A.598)

Now we solve

i g(i, ý)di = i g(i, ý)di + i g(i, ý)di (A. 599)

= ;[K O o( I() 1 - 10 (o) Ko(;)] i 10 ,(i)di

(A.600)

+ K I0(;} Jm.Ko(w) Io(i}- Io()0( K0(i)] di10 ((0}

KO ()O)

+ Io(CO) Ioni d 10 ()0 O) i K0 (i) di

(A.601)
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From Equation (A.596), we know these integrals (similar

derivation for Ko(I)) . Thus, Equation (A.599) is

IO~~4. = 4K,,w I((0) 1 -1 I((0) KO (C)] ~I&o~gZ, &z = [oC lo;-oO o•][-z ;•]l;
lg 1o(o) 01

+ 10° () K (w) [zI(z)' (A. 602)Io ((0)0

1 o 0• Io (o [-z K '¢ )]
Io(O))

-[Ko)) Io(;) -1o((0) KO0o ]

10 0~

+ I (C) K° ( [o Io (0) -( I ()] (A.603)

10 (0)

0 Io(C) 10( ) [co K' (o) K '

10(wo)

Collecting terms and simplifying,

C(0o (C) K0 (w) I' (w)
Jz g(Z, )cfz = -C 2 Io (C) Ko (C) +

(A. 604)

ýoI0 (C) I0 (oK(co) +
0 + C21Io (C) K ' (C)

10 ((0)

C2 •[Io(C) K'o(C)- I"o(;)Ko(C)]

(A. 605)

+ Co00(C)[ K((O )I '() - I(o) K' (o)]Io (o•)

= 2(-W[KoIo](C)) + oI O(C) (W[Ko, Io](0o)) (A.606)

= C2(_) + C(0I(() (1I( ) (A.607)
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So, Equation (A.599) becomes

W, I°() 10)0 (A. 608)

Returning to Equation (A.598)

x, s) = (xs)I (0o)) -. r g(z, )di) F0(X, 0)d (A.598)
(0 I0(() a0

and substituting in Equation (A.608) we get

2Cm(Xs)I'(0)) 2 I°(_ F

0 io( ) (0 4 o i(6)

(A.609)

If we let • = , then when • = 0 , = 0 and when

-, . so,

s_ 2Cm(Xs)I°(0))2o(0 4 J(4['I1(]) F. 1)W
(0s -10(() (x 10(0

(A.610)

or

2X,s) 0 J) 1] F. (X,M)d (A.611)(t) 10o(0 ) 1) 2 10 Io(0))

Using Equation (A.521)

SCm - Fm(X) I ax C. F-, (X)] (A.521)
aX2 + ax ~()

we substitute in Equation (A.611)
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s.-F.(X) = a2X + + PF= (X)

(A. 612)

2Cm Iom) 2 _I°(.) 211 F, (X, )d4
11 0 (o) O 0 0 o0 ((O)

Rearranging gives us

aM2 1 X Cm a02j) " 1 --1 0[Fm(X) + f3F.(X)

ax2 ~ F."S m +(X[
+-•IS "3 1 I°(0)Io ((0) 1)F 3 (X . d•

(A. 613)

If we define

2 1 (w)] (A.614)

where Io((0) = I)(o)) [Abramowitz and Stegun, 1970] and recall that

S = (0 2  (Equation (A.481)), then

j)2 Zý a;ý -
acm 1 a+ m YC. = -[F.(X) + PFi.(X)
ax2-- X aX

(A. 615)

+ 2PJ4 10((0) 1) F,(X,

The right-hand side of this equation can be further simplified

using the initial conditions C,(X,T = T) = F,(X) (Equation

(A.435), C.(X,Z,T -- T) = F(X,Z) (Equation (A.437)), and the
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dimensionless expression for the volume-average immobile region

solute concentration, C. (X, T) UjZu-C. (X, Z. T)dZ where

= 2 (Equation (A.145)). Therefore, at time T =

Fj(X) = Cj.(X,T T) : 2JZC.(X, Z,T = T)dZ = 2 ZF.(X, Z)dZ

(A. 616)

Putting this expression for F.(X) into the right-hand side of

Equation (A.615) gives us

[F. (X) + 2i F. (X, k)dý + JoI0(o-)2P (x, %)d%]

(A.617)
-2PJ4% F. (X, k)<•

So, if we define

F(X, s) = -[Fmo(X) + 2I P j•- Io (O))Fa(X, )d%] (A.618)

then Equation (A.615) becomes

+ yCm = F(X, S) (A.619)

Spherical Diffusion. Using the above derivation when

'U= 2 , we now seek the solution when uJ 3 From Equation

(A.429) we have

WC.(X,Z,T) _ I a Z aC,(X,Z,T)1 0 < Z < 1 (A.429)

T Z- az[ Z(
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which is valid for all the diffusion models. As previously

derived, we now take the Laplace transform of Equation (A.429)

using Equation (A.437) (initial condition) and Equations (A.440)

and (A.441) (boundary conditions):

C.(XZ,T = T) = F.(XZ) X,, < X < X. (A.437)

W, (X, 0, T) = 0 X c < X < X. (A.440)()z

C.(XZ = 1,T) = Cm(XT) X, < X < X. (A.441)

So,

-- _- = ~Zu1 •_'1Z aCZ (A.465)

sO. - C, (X, Z, T = T'') = Zu_ • -Z- (A.466)

sC. - F.(XZ) - -Z z a (A.467)

Thus,

___ ± z a-IS -C. -F. (X, Z) (A.468)Z"-2 IZ•

with the following boundary conditions (Laplace transformed

functions of Equations (A.440) and (A.441)):

C. (X, Z = 0, s) 0 X, < X < X. (A.469)

C.(X, Z = 1, S) = Cm(X, S) X ' < X < X. (A.470)
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We seek the general solution to Equation (A.468) using the

boundary conditions (A.469) and (A.470) for case of x- 3

That is, we seek

C. = C.: + c.0 (A.471)

where Ca is the general solution to the differential equation,

Cac is the complementary solution to the homogeneous

differential equation, and C., is the particular solution to the

nonhomogeneous differential equation. For the case of u.) = 3

Equation (A.468) becomes

I a sZS Fa (XZ) (A.620)

Differentiating the first term of Equation (A.620) gives us

I C a + 2Z SZsCa = F.(X,Z) (A.621)

or

3ZC 2 3Ca
a Z--5 + 2 ac.- = -F. (X, Z) (A.622)
azi- z Cz

Using the previously defined variables

z = (oZ (A. 546)

W(a) = Ca(Z) = Ca (A.547)

where (02 = S (Equation (A.481)), then

oCa C. W d2 oW
5 - -- o • (A .548)

,) dZ z
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a 2 a a) (t3a a (0 aW)~ di =a ( W 2 )2

a2 
-5T I (• = O (A. 549)

Substituting these equations into Equation (A.622) gives us

2 a2 W +2 i)0 )2 W 2W F z

2 W(X,-) --- F.(X, 2) (A.623)

Multiplying through by 1 / 0)O2 yields

a2W 2 aW = F(X, i)

aj ' -_W2 (A.624)

We now seek the complementary solution to Equation (A.624).

That is,

&)W 2 •W
S2 ^_ W -- 0 (A .625)

which we know to be a modified spherical Bessel function of

order zero [Abramowitz and Stegun, 1970]. Therefore, the

general solution to this homogeneous differential equation is

W(Z) = C1 W(^Z) + C 2W 2 (^z) (A.626)

where W1 (') and W2 (z) are of the form

W, (1 ) = A io(z) + B ko(z) (A.627)

W2,(^) = C i0 (z) + D ko() (A.628)

where C 1IC 2 ,A,B,C, and D are constants and io(Z) and ko(z)

are as previously defined and are of the form

sinh
o- I ( ) -(A.629)

2
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k0x = e-Z
2=-zK Kz) 2 (A. 630)

To find the first solution, W1 (I), we apply the boundary

condition (Equation (A.469)) where C1 (Z = 0) = W = 0)

Thus,

aW(i = 0) = 0 (A.631)

So,

-= 0 = A i' ( =0)+ B k'( 0) (A.632)GT"Z 100

since k0(z = 0) is undefined [Abramowitz and Stegun, 1970], we

take B equal to zero. Therefore,

W, (1) = A io(%) (A.633)

Without loss of generality, let's take A = I , so

WJ(I) = io('z) (A.634)

We also know the second solution, W2(Z), to be of the form

W2 (z) = C i0 (z) + D k0 (1) (A.635)

and satisfies the 'zero' boundary condition (Equation (A.470))

where C?(Z = 1) = W = ( ):

C. (X,Z = 1, s) = 0 = W(z = o) (A.636)
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Thus,

0 = Ci 0 (o) + D k0 (o) (A.637)

or

D = C i 0 (0) (A.638)ko (0))

So,

W2 (^) = Ci 0 (Z) C- i(O) ko (z) (A.639)ko(0))

Without loss of generality, let's take C = k0(cO) Thus,

W2 (z) = ko-(m)io io(CO) ko() (A.640)

Now we seek the particular solution (C.,,) to the following

nonhomogeneous differential equation using a Green's function:

D2W 2 aW _W F(X, i) (A.624)aj2 7 -aZ •2

First, we construct the Green's function which is of the form

P(0)W[WI IW 2 ]()

g(-, 0 = (A.641)

W1 (OW 2 (z)
p(O)W[W , W2](C) 0 < <

where W[W,,W 2 ](C) is the Wronskian of W1 and W2, and p(C) is

the coefficient of the first term in Equation (A.624) From

Equation (A.624), we see that p(C) = 1 Next we determine

the Wronskian, W[WIW2]:
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io(Z) ko ((0) i.(z) - io(w) ko(z)
w[w, w2 ] = (A. 642)

io(1) ko( ()io() - io((o) ko(z

=ko((0) io (1) i'o(• io ((0) io(6 ) k'o(

(A. 643)

- ko(o) io(1) io(Z) + io ((o) io (1)ko()

= io(CO)[io(1) k.(1) - io(z) kA(z)] (A.644)

= io(0) W[ko (), io(Z)] (A. 645)

We know that W[ko(1),i 0 (z)] = c / 2 Z2 [Abramowitz and Stegun,

1970]. So,

w[w 1,,w2] ,= i <,
= 2W2  (A.646)

Therefore, the Green's function is

I io ((0)

g(z, ) = (A.647)

2C2 W1 (C)W 2 (Z) 0 <

7 i@o()

2C2 i° ( )[k°( )i()i )- i°(CO) k°( )] ( < C < CO
7C io (Co)

(A.648)

2C2 io (C)[ko( 0) i ) - o (CO) ko(z)] <

Sio (CO)

and

C-f(o) = a, C) 2 (A.649)
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So, the general solution is

W(i) = C =( ) AW,(i) + BW2 () - o• C)J( (A.650)

SA io(i) + B[ko(,o) io () - i(0o) ko(i)]

2io(M) ý2 [ko(m) i.() - io(w) ko(•)] 1) .
xW 2 ~~~~~io ((0)P.(,C CA.651

2[k°(c°) i( 0 ) - i°(0) ko(•)] fiI 2 io(C) FM (XC)dý

To find the constants A and B, we use the 'nonzero' boundary

conditions (Equations (A.469 and (A.470) where W(z) = Ca(Z) ).

Therefore, applying the boundary condition

aw(i = 0)= 0 - 0 (A.652)
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we get

(= ) = 0- Aio(0) + B[k, (() io(0) - io(W) ko(0)

2 io (0) f2
7EW 2 io(CO)) " o [ ko,(o)) io• -io ((0) ko( ) F(X, ý) dý

+ 2io (0)) (0 [ko(CO io (0) - io (w) ko (0)] (X, 0)}
•2 io (o•

2[+ k (Co) i{)(0) -io)(o) kok(0)]

0 (02 io) 21 r2 io(•) F,(X, C)dý

2[k°(o)) i°(0) - i°((0)k°(0)] [(0)io(0) (X, 0)]

WO) 2 io (o))

(A. 653)

Since i0(0) = 0 [Abramowitz and Stegun, 1970] then

0 = B[-io(w) k(0)] (A.654)

Since k'(0) is undefined [Abramowitz and Stegun, 1970], we take

B = 0 Applying the second boundary condition (Equation

(A.470))

W(O)) - Ca (X, Z 1 I, s) - Cm(X, S) (A.655)
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we get

Xs) A 2coi-ojý ()j ý2 [ko (mo) io ()-io ((o) ko <•]F X, ý)dýC..(X, s) = A io(w) ro2 io(t0) f2k~i~

2[ko 0 ) io((O) - io (w) ko(•)] f(
WO2 io(o)) 0 o i( (X, ý)dý

(A. 656)

Thus,

A = (A. 657)
io0 (c)

So, Equation (A.650) becomes

W(O) = Cm.(X,S) io( ) -- 10° g(- C)P.(X, )dC (A.658)

io (0)

_Cm,(x, s)

io ((o)

2io(C) f [2[ko(o) io()- io(0)ko(Cl)]F(X, )dC (A.659)

M02 io(CO) .

2[ko(0) i°(£> - i°(w) k°( >] 1%2 io (X, C>d
x(O2 io (CO)0

Recall, Equation (A.145)

C(X, T) = uJ0 Z"-1 C.(X Z,T)dZ (A.145)r ~JO

and W(z) = a(^z / (0) = Ca(Z) where z = o2 Taking the

Laplace transform of Equation (145) with u = 3 , we get

C1m (X, s) = 3 Z2 C. (X, Z, s) dZ = --- ^ Z2 W(z)d&z (A.660)
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Substituting the general solution, W(i) (Equation (A.658)),

into this expression gives us

(XS) = 3C. (X, s) i2
C.(co s) : 0(- 0 ro; °£d

(A. 661)

30 f£ g(, C) FM (XC)d;d

To determine the first integral, we use the following

homogeneous differential equation:

i2 d2io(2 ) + 2i di°(i) _ 2i0(i) = 0 (A.662)dTj2 di

So,

j2i0 () j 2 dd 2io ()+ 2 dio (i)
Vd (A.663)

Integrating both sides of this equation gives us

f i2 i(i) di = j2 d2io( ) di + 2f i di°(i) di (A.664)d • 2 d•

Now, using integration by parts on the right-hand side of this

equation yields

j2= -- 2f M dio(0)di + 2• o z (A.665)

ro Oi~ddi 10 0 di ri id

ij2 io(i) di = i2 dio () co.

di 0 (A.666)
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So,

•2 io(i) di 0C2 "'(0) (A. 66 )

Thus, Equation (A.661) becomes

Ciui,(x, s)=- 3C.(X, s) [2 i'(w)]X ) 3 i 0 ((o) 10

(A.668)

3

- ( X , s) ( w ) _ 3i 2. g ( , C)d i (x , C)d (A .669 )
C0 o (00 r~

Now we solve

Zgz, g(C &z = 0'Z2 g(z, )d&z + P g(Z, C)dz (A.670)

= 2( 2 [ko(w) io(C)- io(co) ko()] ol z2 iozd

Sio(o) PO

(A.671)

+ 22 io(^)+ i;o(w)) J• z[k°(cO)i°(z) - io(co)ko(z)]d'~z

2C 2 [ko( w) io(C) - io(o)) ko(C)] 1 •o 2  i I

x io (CO) PO

2C2 i0 (0)ko (CO) U2 i 2C2 i0 (C)io) z2 kolZ)dz
+ ci() Jz 0 (^z)d&Z - k1 i0(C&Sio ( CO) x 1 io ( 0)

(A.672)

From Equation (A.667), we know these integrals (similar

derivation for k 0 (z)). Thus, Equation (A.670) is
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fojz2 g(, •)d = 2• 2 [k((w) i°(o)- i°(0) k°()] [C2 io( )]
o ' x io (o))

+ 2C2 io (C) ko (w) )[12 it C2. ( ) C (A.673)

K io (CO)

2 C2 io ( C) io (W ) [22 k ' ( W) - C k ' (C)
7 io(0)) 0 0

Collecting terms and simplifying,

C4Z git)dz = 2 ' o (C) ko ((0)io (C) 2 C4 io (ý) ko (C) io ((o)
g(z,)dz io () io ()

+ 2( 2 i o(ý)io(CO)ko(w) 2C4 io ()ko((0)io(C)

n io (o) x io ((0)
2 0)%2 io (0 i (0)) ko' ((o) 2 C4 io0 (C) io (wo) k' (C)

+- 0
x io ((0) 7E io (Wo)

(A.674)

or

oJiZ2g(z•,;)dz = 2.io~c°)[io(C) k'(C) - io(C) ko(C)]
7 o 

0(0)

(A. 675)

+ 2 0)2C2 [k() it(c) io ( w) k' (w)
E io (()00
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Thus,

-Z2 g(z, C)dz - 2 i(C0)(W[io, ko](=)) + 2- 2 2  (W[ko io())
Sio (0)) it o ( 0))

(A. 676)

2C4 i0 (0t)) + 2 '(02C
2 i° ( 2) (A.677)

io( + 2 (A. )20)

So, Equation (A.670) becomes

JIk2 g(z,2)di = •2[io(•) 1] (A.678)
0, z g ( ' 0• i o ( o ) ) 1

Returning to Equation (A.669), with Equation (A.678) substituted

in, gives us

C•(X,s) = 3Cm(Xs)ij'(o)) 3 C2 io(•) 1lF(X )dt
0 io (0) 0)5 0o io0(0))

(A.679)

If we let =O) ,then when =0 , =0 and when

=co , .= so,

C ~ 3?ý((Xss w i0 (w) 3~ ~ i0 w•x , s) 0 C(~)o• 0) 02ý2 i°(o I F. (X, 4)oW4
0o io ((o) 0)5 i o(CO)

(A.680)

or

- 3?Cm(X, s)~g) _' (w ~ 2 iu) 3i 1FAX,
C()(X, S) 0 0 1 F.(X, )dý (A. 681)

W io ( 33)
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Using Equation (A.521)

sCm-F.(X)-= 5X2 T + X 5X P[SZ - F.(X)] (A.521)

we substitute in Equation (A.681)

- ~a2 m 1C.~
smF. (X) + X ax + F (X)

ax2  (O 3x1ax

- P Cm 7 0 2 0 1]F. Mt)d4}10so3m~c) l°(0)) W 0)2 2io ((0)(•J ,(,•d

(A. 682)

Rearranging gives us

sC2 I . + [F.(X) + Pfj.(X)
ax2 +x ax 0i-) =

__23S ((•ii () IF. (X, 4)dt]

(A.683)

If we define

= + 3i- (A.684)

where i0((o) = i 1((0) [Abramowitz and Stegun, 1970] and recall

that s = (02 (Equation (A.481)), then
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ax--r + I a C = -F. (X) + 53F. (X)
JX 2  X )X

(A. 685)

+ 35j:•2 (iO(o A) 1)F. MX, )dQ]

The right-hand side of this equation can be further simplified

us.i.ng the initial conditions CQ(X,T = T) = F.(X) (Equation

(A.435), C.(X,Z,T = T) = F.(X,Z) (Equation (A.437)), and

the dimensionless expression for the volume-average immobile

region solute concentration, C (X, T) = ULZ'C. (X, Z, T)dZ

where u = 3 (Equation (A.145)). Therefore, at time T = T

F (X) = C. (X, T ) ' 3Z2 C(X, Z, T = T)ldZ = 3JZ2F8(X,Z)dZ

(A.686)

Putting this expression for F,.(X) into the right-hand side of

Equation (A.685) gives us

-[F.e(X) + 35•% F. (X, ý)dý + 3___ J4 io(wý)F.(X, %)d4

(A. 687)

3 J'42 F. (X, %)d%]

So, if we define

i(X,s) = -[F.(X) + 3 io (4) )F. (X, 4)d4] (A.688)

Sio (co) (4

then Equation (A.685) becomes

()2---• + -ý XyCm = F(X, S) (A.689)
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Groan•'s Fnckion. The Laplace transform of Equation (A.428)

together with the appropriate conditions for the various models

resulted in a common differential equation which is of the form

&2Cm(X,s) 1 •Cm(X,S s)
a2  - -- SCm(X, s) = F(X, s) (A.690)a)X2 X aX

where the overbar indicates the transformed function and y and

F(X, s) were developed in the previous sections.

The boundary conditions associated with this differential

equation are obtained by taking the Laplace transform of

Equations (A.439) and (A.449). Thus,

I =-- (X.,T) 0 (A.691)

or

ac .(m x ' S) 0 (A.692)

and

I -- -- (X , C) - (X., ) = 0 (A.693)

or

i•Cm
a-(X., s) - Cm(X., s) = 0 (A.694)

As before, we construct a Green's function by assuming that

Equation (A.690) has a solutijn of the form
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CCm(X,S) = *(X,S) (A.695)

such that this solution satisfies the differential equation

(Equation (A. 690) ) and the boundary conditions (Equations

(A.692) and (A.694)). Substituting Equation (A.695) into

Equation (A.690) yields

d2 o(X, s) + do(X, s) (X, s) = F(X, s) (A.696)

dX2 X dX

In order to construct the Green's function, we first seek a

simpler equation, one where the left-hand side has no constants

in it. Therefore, if we define

y = AX (A.697)

where A is a constant and

b(y, s) = (X, s) (A.698)

then we can rewrite Equation (A.696) in terms of y. Thus,

dO (X, s) _ d(d (y, s) dy = A- d 24(y, s) (A.699)
dX dy dX dy

d 20(X' S)-dX dyd (A dD( )YS)yy, s) -4-= A 2 d 2(I(y' S)dy (A.700)

Substituting these expression back into Equation (A.696) yields

A2 d2( S)(y, s) Y d4D(y, s) ( (A2 +--A - y(y, s) = Fry
d y2 X dy A
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Multiplying each term by X 2 gives us

X2A 2 d240(y, s) + XA d4(y, s) yX 24(yS) X2(- S (A.702)dY2 +XA dy A (,s A72

or

y2 d 2O(y, s) + dc(y, s) y2 4
D(y, s) = F s (A.703)

dy2  dy A2 2 A

If we choose A such that

Y -(A.704)
A2

or

A = yi (A. 705)

then Equation (A.697) is

y = y2 X (A.706)

and dividing by y2 then Equation (A.703) becomes

d2 4'(y,s) 1 dcb(y,s) s Y y(7dy2 + Y y4)(y, S) 1/ -- 9 -•(y,s) (A.707)
dy2  y dy ~y -- SJ

for the interval y,, < y < y.

We now look at the Laplace transformed boundary condition at

the dimensionless well radius (Equation (A.692)) and convert it

in terms of yw using the above definitions. Since we defined

Cm(X,s) = O(X,s) , then
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(X., S) d (ys) 7 -(y, s) = 0 (A.708)
axdy dX dy

or

d4-y(yw, S) = 0 1A.709)

dy

where

Y= Y X. (A.710)

Now, we look at the boundary condition at the dimensionless

radius of the contaminated zone (X.) at time T. Recall the

boundary condition at X. (Equation (A.694)). We now rewrite

this boundary condition in terms of y,. Looking at the first

term, we get

8d d, dy '•dcbE - (x., s) = r d- (y. s) -dy = F (y., s) A.711)

axdy dX 2dy(A71

and the second term

OX. S) s = (y., s) (A.712)

Substituting these expressions back into Equation (A.694) gives

us

E Y2 --y (y., s) - l(y., s) = 0 (A.713)

where

y. = y2 X. (A.714)
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To derive the Green' s function associated with this

boundary-value problem, we first must find the general solution

to the homogeneous problem. That is, we seek the complementary

solution to Equation (A.707):

d24 ( y, s) I d•b(y, s) 0 S+2~y s) 1d(, )- 4 (y, s) = 0 Y,, < Y < Y. (A.715)

dy 2  y dy

which is in the form of a modified Bessel function of order zero

[Abramowitz and Stegun, 1970]. The general solution to this

homogeneous differential equation is of the form

(D(y, s) = C1 D1(y, s) + C2 42(y, s) ".716)

where CI and C2 are constants and 401(y,s) satifies the

differential equation and the boundary condýition at Y = Y.

and c) 2 (y,s) satifies the differential equation and the boundary

condition at y = y. . Both of these solutions are of the form

4 1 (y, s) = A 10 (y) + B K0 (y) (A.717)

0 2 (y, s) = C1 0 (y) + DK 0 (y) (A.718)

where A, B, C, and D are constants and I0 (y) and K0 (y) are

Bessel functions of the first kind, order zero and third kind,

order zero, respectively and of the form

= ) (2k

0k=O ((k !)2 (A.719)

K Y 0(y) ln y + (1)+ ( )(yý)k
0  1 2oy(!) 2 (1 + + + +-- (A.720)

= 2 k=1 (k)2 2 k
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To find the first solution, 01 (y,s), we apply the boundary

condition at the well (Equation (A.709)):

-O-- (y.) = 0 = A 1(y,)+ BK0(y.) (A.721)
dy00

Thus,

-B K' (y.)
A = 0(A. 722)

1 (y.)

So,

-B Ko (y.)
4, (y, s) = - I0 (y) + B Ko(y) (A.723)

or

0 (y,s) = B K(Y) 10(Y) + KO(y)] (A.724)Io'( Y'.) I

If we choose B = 1I(yw) , without loss of generality, then

Equation (A.724) becomes

01 (y, s) = -K'(yw) I0 (y) + IU(y,,) Ko(y) (A.725)

To find the second solution, (, 2 (y,s), we apply the boundary

condition at y. (Equation (A.713)):

-1y d•)2

y (y., S) - 0 2 (Y., s) = 0 (A.726)

Thus,

e 2[C 10(y,) + D K0(y.)] - C I0 (y.) + D K0 (y,) = 0 (A.727)
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or

y2 1' J(y.) 10(y. + D y2 K' (y.y K = 0 (A.728)

Solving C in terms of D produces

- D y• Ko (y.)- Ko(y.)

C DeY = I y - IoY) (A. 729)

Yi I,(Y.) - (y.

Thus,

-D EYi K'(y.) - NoK .

22 (Y, s) = - 1 -1 1]o(y) + D Ko(y) (A.730)
[e y I(y.) - Io(Y.)]

If we choose D = eY2I'(Y.) - I0(y.) without loss of

generality, then

02 2 (YS) = Y K'(y.) + KO(Y.) Io(Y) + I;(y.) -I o(y) Ko(y)

(A.731)

We now seek the particular solution to Equation (A.707)

using a Green's function which is of the form

(DI (Y) 2 (O )Y

g(y, 11) = (A.732)
P(T) O, (2(Y) 

Y. < Ti < Y
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where p(TI) is the coefficient of the first term in Equation

(A.707), which is equal to one, and W[,',4D21](71) is the

Wronskian of (b, and 02' Before we determine the Wronskian,

let's define the following operators:

G[I11,1 0 ](y.) = e 2 
1 (y.) - I0 (y.) (A.733)

where I is a first kind, order one Bessel function and is equal

to IU (Abramowitz and Stegun, 1970] and

H[K1 , K0 ](y.) = ey! K,(y.) + K0 (y.) (A.734)

where K, is a third kind, order one Bessel function and is equal

to -K' [Abramowitz and Stegun, 1970]. Thus,

c12 (y, s) = H[KI, K0](y.) 10 (Y) + G[I, 10 ](y.) Ko(y) (A.735)
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Now we determine the Wronskian:

01 2
W[4 1 4 2 ]() =(A.736)

w [o j, 0 2 ( ) = 1 D , 4 2

So,

-K,(y,)I 0o(y)+ I'(y.)Ko(y) H[K,,Ko](y.)Io(y)+G[1,,I.](y.)Ko(y)

[ -K•(y.) I'(y) + o'0(y.) K'(y) H[K,, K,](y.) I'(y) + G[I,, 410 (y.) K,(y)

(A.737)

[-K'(y.) I,(y) + I'(y.) Ko(y)][H[K1 , Kol(Y.) IY) + G[Iu, I](y.) K'0(y)]

-[-Kl(y.) I(y) + Il(y.) Ko(y)][H[K,, Ko](y.) I,(y) + G[I,,10 ](y.) K(Y)]

(A.738)

= K(y,, ) G[ I, I, 1](y. )[I (y) Ko (y) - 10 (y) K (y)]

+ V(y,, ) H[K1 , Ko](y. )[Ko (y) IV(y) - K' (y) 10(Y)]

(A.739)

SK (y,, ) G[11 ,](y. )W[Ko , 10](y) + Io (y ) H[K1 , KOI(Y. )W[Ko , I 0 ](Y)

(A.740)

We know that the W[K 0 ,1 0 ](y) 1 / y [Abramowitz and Stegun,

19701, so

W[ 4,) c 2 ](y) = l[K'(y,) G[1,, 10 ](y.) + I'(y,) H[K,, Ko](y.)]
y 00

(A.741)
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or

w[zD, I C2](y) = [11(y.) H[KI, K0](y.) - K(y.) G[ I,, 10](y.)]
y

(A. 742)

where 11 is equal to I' and K1 is equal to -K' [Abramowitz and

Stegun, 1970]. Thus, the Green's function (Equation (A.732)) is

g(DI (T 4) 2(Y) Y.(A. 743)

W[cb11c021T) i

or

[K, (y.) 10 (y) + 11 (y.)K 0 (y)][H[K1 , K0](y. )10 (71) + G[I, , 10](y. )K0 (TI)

g (y, TO

!I P,(y.)H[KI, Ko](y.) -K, (y)G[II, 101(y.)]
TI

(A. 744)

or

[I, (y. )H[KI , K0 ]ry.) - K, (y. )G(1 1 , I, (Y. )I
g (y, TO

-1[K, (y. )1 trj) + 1, (y )K0 (71)] [H[K1  , K0 J(y. )I, (y) + G[1 ,i 4](y. )K0 (y)]

[11,(y.)H[K,, K0 ](y. ) - K, (y, )G[11 , T01(y. )]

(A. 745)
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where the top expression is defined for the interval y < Tj < y.

and the bottom expression is defined for the interval

y. 5 TI : y.

The general solution to Equation (A.707) is of the form

f g(y, TI, s) (1, s)dT (A.746)

Since

y = y 2 X (A.706)

then

1 1

1 y 2•; d~l = y 2 dt (A.747)

Thus, Equation (A.746), together with the right-hand side of

Equation (A.707), become-

YS) = g y 2  X, 1i t s S) d (A.748)

= . g y2 X, y2 4, Y' F(4, S) y2 dt (A.749)

= wx g y• X, 2 2 , sy Y 2 F(t, s) dt (A.750)

Since Cm(X, S) = (X, s) (Equation (A.695)), and

(D(y, S) = O(X, s) (Equation (A.698)) then

C(X, s) =J- y2 X, y , s y 2 F(ý, s) d4 (A.751)
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If we define

b,(X, ,s) g X, 7 2, s (A.752)

then
x 1

(X, S) = * b(X, 4, S) y 2 F(4, s) d4 (A.753)

Substituting in the constructed Green's function (Equation

(A.745)) using Equations (A.706) and (A.747) gives us

Cm(X,s) =

I, (y.)H[K,, K ](y. - KI (y.)C,[ l,, Io](y. ) y N(. s)A•

+

Y I, )•y.H[ , Ko](y.,) - K, (y. )G[,, •1(]y.,) F 4 s)&,

(A.754)
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Simplifying yields

1 1___

{H[K11 KJ1(y-)10(yX) + G[11, Io](y.)KoQYiX)] K,(y.)K.I(2~F~ s)&,

+I I

(A. 755)
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AeNdiNx C: Sour-e Code

C Program Pulsepmp.FOR
C
C By: Capt Tom Adams and Capt Chris Viramontes (ENV/GEE-93S)
C
C Source Code created Sep 93
C
C Title: Analytical Modeling of Aquifer Decontamination By
C Pulsed Pumping When Contaminant Transport Is Affected
C By Rate-Limited Sorption/Dczorption
C
C This code calculates the solute concentration out from an
C extraction well located at the center of a circular
C contaminated plume to some radius r*. The code uses the
C equations governing the transport of an organic contaminant
C during aquifer remediation by pulsed pumping. Contaminant
C transport is assumed to be affected by advection, dispersion,
C and sorption/desorption. Sorption is modeled assuming
C equilibrium or rate-limited, with the rate-limitation
C described by either a first-order equation, or by Fickian
C diffusion of contaminant through layered, cylindrical, or
C spherical immobile water regions. The code is designed to
C use an arbitrary initial distribution of contaminant in both
C the mobile and immobile regions.
C
C The purpose of the code is to numerically invert the
C analytically derived Laplace domain solute concentrations
C solutions to obtain the concentration versus time and radial
C distance profiles (breakthrough curves). The code uses the
C Stehfest algorithm as the Laplace inversion routine, the
C International Mathematical and Statistical Library (IMSL),
C SFUN Library, to evaluate the Bessel functions associated
C with the solutions, and numerous subroutines and external
C fuctions from Press and others. Changes to the code will
C require compiling and linking with the IMSLIB.LIB.
C
C References:
C
C Carlson, David, Mark E. Oxley, and Mark N. Goltz. "A Green's
C Function Solution to Aquifer Decontamination by Pulsed
C Pumping with Arbitrary Radial Initial Conditions," (in
C preparation). School of Engineering, Air Force
C Institute of Technology (AETU), Wright-Patterson AFB,
C OH, 1993.
C
C Goltz, Mark N. and Mark E. Oxley. "Analytical Modeling of
C Aquifer Decontamination by Pumping When Transport is
C
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Affected by Rate-Limited Sorption," Water Resources
C Research, 27 (4): 547-556 (April 1991).
C
C International Mathematical and Statistical Library,
C International Mathematical and Statistical Library
C User's Manual Version 2.1. Houston, TX: January 1989.
C
C Press, William H., Saul A. Teukolsky, William T.
C Vetterling, and Brian P. Flannery. Nu•merica
C Recipes in FORTRAN. Cambridge, MA: Cambridge
C University Press, 1992.
C
C Stehfest, Harold. "Numerical Inversion of Laplace
C Transforms," Communications of the ACM. 13 (1): 47-49
C (January 1970).
C

C The following are the input parameters located in the file
C "INPUT.DAT". They are defined in the order in which they are
C read in.
C
C
C QW Pumping rate [L**3/TI
C
C B Aquifer thickness [L]
C
C AL Longitudinal dispersivity [L]
C
C THETA Total porosity
C
C RHO Soil bulk density [M/L**31
C
C KD Sorption distribution coefficient [L**3/M]
C
C PHI Ratio of mobile to total water
C
C EF Fraction of sorption sites in contact with mobile
C water
C
C ALFA First-order rate constant [1/T1
C
C DE Fickian diffusion coefficient in the immobile
C region [L**2/T]
C
C A Half-width of immobile layer or radius of immobile
C spherical/cylindrical zones [L]
C
C DO Mobile region molecular diffusion coefficient
C [L**2/T]
C
C CP Proportionality constant used in deriving the
C coefficient of leakage of the solute from the
C contaminated zone to the outer boundary (EPS)
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C
C XF1 The radial distance from the well out to the edge
C of the contaminated zone (LI
C
C Fl Initial concentration in the mobile region at a
C given XFI location. Entered in as a dimensionless
C value
C
C Q Temporary variable used to set the number of
C points along the radial axis (RPOINT)

C ACA The number of points in the immobile region along
C the a-axis. Entered in as a dimensionless value
C
C CA Initial concentration in the immobile region of a
C certain geometry at a given ACA location. Entered
C in as a dimensionless value
C
C The following are key program variables or calculated
C parameters:
C
C N An even integer that affects the accuracy of the
C Laplace inversion routine
C
C TSTEP Number of time intervals within the pump on/off
C condition
C
C TFIN Length of time pump is on or off in a given cycle
C
C PUMP Flag used to determine if the user wants to model
C the pump on or off
C
C ALPHA This parameter takes on different meanings
C depending on whether the pump is on or off and
C whether a diffusion or first-order assumption is
C modeled. If the pump is on and a diffusion
C assumption is modeled, then ALPHA is the
C dimensionless immobile region solute diffusion
C coefficient. If the pump is off then this value
C is not used. If a first-order assumption is
C modeled, then ALPHA is the dimensionless first-
C order rate constant for when the pump is on and
C off. However, the magnitude of this parameter
C differs for the two conditions.
C
C BETA Solute capacity ratio of immobile to mobile
C regions
C
C X Dimensionless radial distance
C
C XW Dimensionless well radius
C
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C XSTAR Dimensionless radius of initially contaminated
C zone
C CONCM The dimensionless mobile region solute
C concentration as a function of radial distance and
C time
C
C CONCIM The dimensionless immobile region solute
C concentration as a function of radial distance
C from the well, location along the a-axis in the
C immobile region, and time
C
C CIM The dimensionless immobile region solute
C concentration as function of radial distance from
C the well and time. This is for the first-order
C rate model and uses the diffusion models geometry
C as a comparison for the immobile region
C concentration
C
C T Dimensionless time
C
C APOINT The number of points along the immobile region
C axis
C
C RPOINT The number of points along the radial axis
C
C RETARD Retardation factor when the LEA model is assumed
C
C RM Mobile region retardation factor
C
C RIM Immobile region retardation factor
C
C THETAM Mobile region water content
C
C THETAIM Immobile region water content
C
C TCONV Conversion factor used to convert dimensionable
C time to dimensionless time. This value takes on
C different magnitudes for the pump on and off
C
C XCONV Conversion factor used to convert dimensionable
C distance to dimensionless distance. This value
C takes on different magnitudes for the pump on and
C off
C
C EPS Coefficient of leakage, epsilon, of the solute
C from the contaminated zone to the outer boundary.
C Used when the pump is off
C
C S Laplace transform variable
C

C
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REAL*8 ALPHA,PI,DE,BETA,X,XW,XSTAR,XLOW,XHI,WLOW,WHI,ACA,
&Y2,Z,ZHI,ZLOW,WZHI,WZLOW,AL,XF1,Fl,Y2X,AXROOT,AWAIT,
&CONCM,CONCIM,T,YP1,YTEMP,KD,CA,YPN,ALIM,BLIM,TMP4,TMP5,
&TMP6, TMP7, TMP8, TMP9, TMP 10, FlF, CAF, DO,
&CP, XCONV, EPS, TMP11

C
DIMENSION XLOW(100),XHI(100),WLOW(100),WHI(100),ACA(10),
&Y2 (10), ZHII (1), ZLOW(10) ,WZHI (10) ,WZLOW(10) ,XF1 (10),
&F1 (10) ,Y2X(10) ,T(10) ,AXROOT(l0) ,AWAIT(l0) ,CONCM(10),
&CONCIM(1O,10),YTEMP(10),CA(10,10),TMP4(l0),TMP5(10),
&TMP6(10),TMP7(10),TMP8(1O),TMP9(10),TMP1O(10),F1F(10),
&CAF(10, 10) ,TMPll (8)

C
REAL*8 CMBAR, CABAR
EXTERNAL CMBAR, CABAR

C
CHARACTER*21 MODEL

C
INTEGER CHOICE,TEN,APOINT,IX,RPOINT,TSTEP,N,GEOM,PULSE,
&PUMP, TWEN

C
COMMON /ALL/ CHOICE,ALPHA,PUMP
COMMON /MCMCA/ TEN,PI
COMMON /MCMF/ BETA
COMMON /MCAF/ APOINT,ACA, CA, GEOM,AWAIT,AXROOT
COMMON /MCM/ X,XW,XSTAR,XLOW,XHI,WLOW,WHI,TMP11,EPS,TWEN
COMMON /MCA/ Z,ZHI,ZLOW,WZHI,WZLOW,IX,TMP4,TMP5,TMP6,Y2
COMMON /I'F/ AL,RPOINT,XF1,F1,Y2X,TMP7,TMP8,TMP9,TMP1O,
&XCONV

C
OPEN(7,FILE=' INPUT.DAT' ,STATUS='OLD')
OPEN (8, FILE=' REPORT .DAT' ,STATUS~='UNKNOWN')
OPEN(9,FILE='F1.DAT',STATUS='OLD')
OPEN (10,FILE='CA.DAT' ,STATUS='OLD')
OPEN(1l,FILE='OUT.DAT',STATUS='UNKNOWN')
PRINT*, ' Select model number for simulation:'
PRINT*,' 1 = LEA'
PRINT*,' 2 = FIRST-ORDER RATE'
PRINT*,' 3 = LAYERED DIFFUSION'
PRINT*,' 4 = CYLINDRICAL DIFFUSION'
PRINT*,' 5 = SPHERICAL DIFFUSION'
READ*, CHOICE
GEOM=0
IF (CHOICE.EQ. 1)MODEL='LEA'
IF(CHOICE.EQ.2)THEN
MODEL= 'FIRST-ORDER RATE'
PRINT*,' Which diffusion model do you wish to compare

& to the First-Order model?'
PRINT*,' 1 = LAYERED DIFFUSION'
PRINT*, ' 2 = CYLINDRICAL DIFFUSION'
PRINT*,' 3 = SPHERICAL DIFFUSION'
READ*, GEOM

ENDIF
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IF(CHOICE.EQ.3)MODEL='LAYERED DIFFUSION'
IF(CHOICE.EQ.4)MODEL='CYLINDRICAL DIFFUSION'
IF(CHOICE.EQ.5)MODEL='SPHERICAL DIFFUSION'

C
C Set precision, 'N', for Stehfest subroutine and precision
C 'TEN' and 'TWEN' for GAULEG computations. Note that 'TWEN'
C is used for Gauss-Quadrature integration for pump off and
C 'TEN' is used likewise for pump on conditions. 'TWEN' is
C larger due to ill-behaved modified Bessel functions in the
C pump off solution. Set the values for the first derivatives
C 'YP1' and 'YPN' for the Spline fit, time offset, and PI.
C

PRINT*,'Enter Stehfest precision'
READ*,N
PRINT*, 'Enter integration precision (100 max)'
READ*,TWEN
TEN=I0
YPl=0.DO
YPN=1.D30
TOFFSET=0.
PI=4.*DATAN(1.ODO)

C
C Read in input data
C

READ (7, *) QW, B, AT,
READ(7, *)THETARHOKD
READ (7, *) PHI
READ (7, *)EF

C
C Read in First-Order rate constant
C

READ(7,*) ALFA
C
C Read in values for Fickian diffusion coefficient in the
C immobile region (DE), half-width of immobile layer or radius
C of immobile cylindrical and spherical geometries (A), mobile
C region diffusion coefficient (DO), and proportionality
C constant (CP) for EPS
C

READ(7, *)DEA,DOCP
C
C Read in the mobile region concentrations at a given radial
C location
C

DO 6 I1=1,10
READ(9,*,END=ll) XFl(II), F1(Il)
RPOINT=Il

6 CONTINUE
11 CONTINUE

C
C Set up headinge
C

IF(MODEL.EQ.'LEA')THEN

C-6



WRITE (6,20)
WRITE (8, 20)

C
20 FORMAT(25X, 'EQUILIBRIUM SORPTION/DESORPTION')

C
ELSE IF(MODEL.EQ. 'FIRST-ORDER RATE')THEN

WRITE(6, 30)
WRITE (8, 30)

C
30 FORMAT(13X,'SORPTION/DESORPTION CONTROLLED BY FIRST-

& ORDER RATE PROCESS')
IF (GEOM.EQ.1)THEN
WRITE (6, 31)
WRITE (8, 31)

31 FORMAT(13X, 'IMMOBILE REGION COMPARED WITH LAYERED
& DIFFUSION')

ELSE IF(GEOM.EQ.2)THEN
WRITE (6, 32)
WRITE(8, 32)

32 FORMAT(13X,'IMMOBILE REGION COMPARED WITH CYLINDRICAL
& DIFFUSION')

ELSE
WRITE(6, 33)
WRITE (8, 33)

33 FORN-AT(13X,'IMMOBILE REGION COMPARED WITH SPHERICAL
& DIFFUSION')

ENDIF
C

ELSE IF(MODEL.EQ. 'LAYERED DIFFUSION' )THEN
WRITE (6, 40)
WRITE (8, 40)

C
40 FORMAT(13X,'SORPTION/DESORPTION CONTROLLED BY DIFFUSION

& WITHIN LAYERS')
C

ELSE IF(MODEL.EQ. 'CYLINDRICAL DIFFUSION') THEN
WRITE (6, 50)
WRITE (8, 50)

C
50 FORMAT(13X, 'SORPTION/DESORPTION CONTROLLED BY DIFFUSION

& WITHIN CYLINDERS')
C

ELSE
WRITE (6, 60)
WRITE (8, 60)

C
60 FORMAT(13X,'SORPTIONý'/DES-ORPTION CONTROLLED BY DIFFUSION

& WITHIN SPHERES')
ENDIF

C
C Print out the input parameters and set up the retardation
C factor (RETARD) for the LEA model when the pump is on
C
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WRITE(6, 70)QW, B, AL
WRITE (8,70)QW,B,AL

70 FORMAT(' QW=',FI5.4,4X,'B=',FI7.2,3X,' AL=',FI5.4)
C

WRITE (6, 80) THETA. RHO, KD
WRITE (8,80)THETA,RHO,KD

80 FORMAT(' THETA=',FI2.4,3X,' RHO=',FI6.3,2X,' KD=',Fl3.2)
C

RETARD=1. +RHO*KD/THETA
WRITE(6, 100)RETARD,PHI,EF
WRITE (8, 100)RETARD,PHI,EF

100 FORMAT(' R=',FI5.4,4X,'PHI=',FI7.4,2X,'EF=',FI4.3)
C
C Set up the Firs:- Order Rate and Diffusion models and print
C out the input parameters associated with the pump on and pump
C off
C
C If we assume only a fraction, PHI, of the total aquifer
C porosity, THETA, is mobile, then THETAM = PHI * THETA
C
C If we assume only a fraction of sorption sites are in contact
C with mobile water, EF. then RM = 1 + RHO*EF*KD/THETAM and
C RIM = 1 + RHO*(l-EF)*KD/THETAIM
C

WRITE(6,!60)DE,A,DO,CP,ALFA,N
WRITE(8,160)DE,A,DO,CP,ALFA,N

160 FORMAT(5H DE=EI5.5,4X,2HA = F19.4,2_ ,3HDO=EI4.5,/,
&4H CP=F15.4,4X,5HALFA=,4X,E12.5,2X,2HN=,13X,I2)

C
C Set up mobile and immobile porosities and retardation factors
C

THETAM=PHI*THETA
THETAIM=THETA-THETAM
RM=I. +RHO*EF*KD/THETAM
RIM=I.+RHO* (I.-EF) *KD/THETAIM
BETA=THETAIM*RIM/ (THETAM*RM)

C
C Set up the dimensionless immobile region solute diffusion
C coefficient when the pump is on. This parameter is used
C whenever the diffusion models are activated (pump on) and is
C not a used parameter when the pump is off
C

ALPHA= (DE*AL*AL*2. *PI*B*THETAM*RM) / (A*A*QW*RIM)
C
C Set up the coefficient of leakage of the solute from the
C contaminated zone to the outer boundary. This parameter is
C used when the pump is off
C

EPS=DO/CP/A*DSQRT (DE*RM/DO/RIM)
C
C Print out the calculated variables
C
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WRITE(6,180)RM,RIM,BETA,ALPHA,EPS,TWEN
WRITE (8,180) RM, RIM, BETA, ALPHA, EPS, TWEN

180 FORMAT(' RM=',FI5.5,4X,' RIM=',FI7.5,2X,
&' BETA=',FI2.5,2X,/,' ALPHA=',EI2.5,4X,' EPS= ',E17.5,
&2X, 5HTWEN=9X, 13,//)

C
C Read in the initial concentration in the immobile region at a
C given location along the a-axis. This value is read in as a
C dimensionless value. Restriction: For every radial point
C from the well each location must have the same number of
C immobile region points, (i.e., number of a-points along the
C z-axis is constant).
C

IF(MODEL.NE.'LEA') THEN
Q=0.0
DO 21 12=1,RPOINT

DO 16 13=1,10
READ(10,*,END=25)Q,ACA(I3),CA(I2,I3)
IF(ABS(Q-XF1(I2)).GE. (.0001))THEN

BACKSPACE (10)
GOTO 21

ENDIF
APOINT=I3

16 CONTINUE
21 CONTINUE
25 REWIND(10)

C
C Call GAULEG subroutine (Gauss-Legendre) to find the
C orthogonal roots (abscissas) and weights of the immobile
C region for Gauss Quadrature integration. This is required to
C find FBAR.
C

ALIM=0 .DO
BLIM=1.DO
CALL GAULEG (ALIM, BLIM, AXROOT,AWAIT, APOINT)

ENDIF
C
C Ask the user what they want to model: Pump On or Pump Off
C

5 PRINT*, 'Do you want the pump on or off? (1=on : 0=off)'
READ*, PUMP

C
C Setup conversion factors used to convert dimensionable
C distance (radial) to dimensionless distance for the pump on
C and pump off
C

IF (PUMP .EQ. 1) THEN
XCONV= 1./AL
WRITE (6, 10)
WRITE(8,10)

10 FORMAT(/,15X,'BREAKTHROUGH CONCENTRATIONS WHEN THE PUMP
& IS ON',!)
ELSE
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XCONV=DSQRT(DE*RM/DO/RIM)/A
WRITE(6,15)
WRITE(8,15)

15 FORMAT(/,15X,'BREAKTHROUGH CONCENTRATIONS WHEN THE PUMP
& IS OFF',/)
ENDIF

C
C Set up ALPHA for the First-Order Model (pump on/pump off)
C

IF (CHOICE.EQ.2)THEN
IF (PUMP.EQ. 1) THEN

ALPHA=(ALFA*2.*PI*B*AL*AL)i(BETA*QW)
ELSE

ALPHA=ALFA*A*A/THETAIM/DE
ENDIF

ENDIF
C
C Set up the time interval and convert to a dimensionless
C value. Time takes on different values when the pump is on
C and off
C

PRINT*,' Enter time increment & number of time intervals
&(10 max)'
PRINT*,' (Tf,# time steps)'
READ*,TFIN, TSTEP

C
C For the LEA model (pump on) time is dependent upon RETARD and
C THETA
C

-F (PUMP.EQ.1)THEN
IF (CHOICE.EQ.1) THEN

RM=RETARD
THETAM=THETA

ENDIF
TCONV=QW/(2.*PI*B*TH TAM*AL*AL*RM)

ELSE
TCONV=DE/RIM/A/A

ENDIF
DELTT=(TFIN)/REAL(TSTEP)
DO 200 JJ=1,TSTEP

T(JJ)=(JJ)*DELTT*TCONV
WRITE(8,195)T(JJ)

195 FORMAT(IX,'DIMENSIONLESS TIME = ',FII.5)
200 CONTINUE

C
C Call SPLINE subroutine to cubic spline fit the mobile
C concentration profile
C

CALL SPLINE(XF1,FI,RPOINT,YP1,YPN,Y2X)
C
C Find dimensionless boundary values on the radial axis:
C XW and XSTAR. These values differ for the pump on and pump
C off
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C
XSTAR=XF1 (RPOINT) *XCONV
XW=XF1 (1) *XCONV

C
C Enter the main calculation loop
C

DO 1000 IX=1,RPOINT
C
C Convert dimensionable r to dimensionless X
C

X=XF1 (IX) *XCONV
WRITE(6,349)XF1 (IX),F1(IX)

349 FORMAT(/,19('*',27H Calculating at (R,Fl)
& F5.2, 1XF9.6, IX, 18(1*'))

C
C Call GAULEG subroutine (Gauss-Legendre) to find the
C orthogonal roots (abscissas) and weights over the two
C intervals: XW - X and X - XSTAR in the mobile region for
C Gauss-Quadrature integration.
C

IF (PUMP.EQ. 1) THEN
CALL GAULEG (XW, X, XLOW, WLOW, TEN)
CALL GAULEG (X, XSTAR, XHI, WHI, TEN)

ELSE
CALL GAULEG (XW, X, XLOW, WLOW, TWEN)
CALL GAULEG(X,XSTAR,XHI,WHI,TWEN)

ENDIF
C
C Call DSTFEST subroutine (Stehfest) to invert the
C dimensionless Laplace transformed mobile region solute
C concentration (CMBAR). DSTFEST returns with the
C dimensionless mobile region solute concentration (CONCM)
C

CALL DSTFEST (CMBAR,N,T,CONCM,TSTEP)
C

DO 482 N3=1,TSTEP
WRITE(6,583)T(N3)/TCONV,CONCM(N3)

583 FORMAT(7H Time =2X,FI0.5,3X,7HCONCM =,2X,E12.5)
482 CONTINUE

C
C Setup parameters for calculating and inverting the
C dimensionless Laplace transformed concentration at points
C within the immobile region (CABAR). Call GAULEG subroutine
C (Gauss-Legendre) to find the orthogonal roots (abscissas) and
C weights in this region for Gauss-Quadrature integration.
C

IF(MODEL.NE. 'LEA') THEN
DO 225 17=I,APOINT

Z=ACA(17)
CALL GAULEG (ALIM, Z, ZLOW, WZLOW, TEN)
CALL GAULEG(Z,BLIM, ZHI,WZHI,TEN)

C
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C Print out the immobile concentration at a given radial
C location and location within the immobile region
C

WRITE(6,749)XF1(IX),Z,CA(IX,I7)
749 FORMAT(29H Calculating at (R,Z,CA) ...

& 2X,F5.2,2X,F4 .2,2X,F9.6)
C
C Call DSTFEST subroutine (Stehfest) to invert the
C dimensionless Laplace transformed concentration at points
C within the immobile region (CABAR). DSTFEST returns with the
C dimensionless concentration at points with the immobile
C region (YTEMP)
C

CALL DSTFEST(CABAR,N,T,YTEMP,TSTEP)
CAF (IX, I7)=YTEMP (TSTEP)
DO 215 K6=1,TSTEP

WRITE(6,748)T(K6)/TCONV,YTEMP (K6)
748 FORMAT(7H Time =2X,F10.5,2X,9HCONCIM = E12.5)

CONCIM(I7,K6)=YTEMP (K6)
215 CONTINUE
225 CONTINUE

M16=APOINT
ELSE

M16=1
ENDIF

C
C Convert dimensionless time to real time and print out
C results: distance or radius from the well, real time, and
C concentration at the fixed distance for both the mobile and
C immobile regions
C

WRITE (8,501)
501 FORMAT(//,4X,3HXF1,10X,4HTIME,10X,5HCONCM,10X,3HACA,9X,

& 6HCONCIM/)
DO 500 K8=I,TSTEP

DO 510 K9=1,M16
WRITE(8,520)XF1 (IX), ((T(K8)/TCONV)+TOFFSET),

& CONCM(K8),ACA(K9),CONCIM(K9,K8)
520 FORMAT(5(Ell.5,3X))
510 CONTINUE
500 CONTINUE

FIF (IX) =CONCM (TSTEP)
1000 CONTINUE

C
C Reset mobile and immobile region initial conditions
C

DO 700 ICX=1,RPOINT
Fl (ICX)=FlF (ICX)
IF(FlI(ICX) .LT.0.)F1(ICX)=0.
WRITE (6,730)XF1 (ICX) ,Fl (ICX)
WRITE(8,730)XF1 (ICX) ,F1 (ICX)

730 FORMAT(/,5H R = F5.2,3X,16HInitial CONCM = F12.6,/)
DO 710 ICZ=1,APOINT
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CA(ICX, ICZ)=CAF (ICX, ICZ)
IF(CA(ICX, ICZ) .LT.0. )CA(ICX, ICZ)=0.
WRITE(6,740)ACA(ICZ) ,CA(ICX,ICZ)
WRITE(8,740)ACA(ICZ) ,CA(ICX,ICZ)

740 FORMAT(5H Z = F5.3,3X,17H Initial CONCIM = F11.6)
710 CONTINUE
700 CONTINUE

TOFFSET=TF IN+TOFFSET

C Ask the user if he/she wants to continue running the
C simulation
C

PRINT*,' Do you wish to continue the program? (1=y I =n)'
READ*, PULSE
IF(PULSE.EQ.1)GOTO 5

C
C Close all files that were previously opened
C

CLOSE (7)
CLOSE (8)
CLOSE (9)
CLOSE(10)
CLOSE (11)
END

C

C
DOUBLE PRECISION FUNCTION CMBAR(S)

C
C This is an external function used to set up the parameters
C and calculate the variables associated with the
C dimensionless Laplace transformed mobile region solute
C concentration (GMBAR). CMBAR is defined by Equation 3.66 or
C A.394 for the pump on and 3.105 or A.755 for the pump off
C

REAL*8 S,ALPHA,PI,BETA,X,XW,XSTAR,XLOW,XHI,WLOW,WHI,GAMA,
&OMEGA, XCOiN'ST, DENOM, GONSTl, CONST2, CONST3, CONST4, CONST5,
&CONST6,CONST7,CONST8,YW,YSTAR,CEYEO,CEYEl,EYEl,EYEO,EPS,
&Yl,Y2,Y3,Y4,Y5,Y6,Y7,Y8,HFK,GI,YTMP,DA,DB,GA,GB,HA,HB,
&DENOM1, DENOM2, YD1, YD2

C
REAL*8 FBAR,DBSI1E,DBSIOE,CMINT1,CMINT2,CMINT3,CMINT4,
&DTANH, DBSKOE, DBSK1E, DAIE, DBIE, DAIDE, DBIDE
EXTERNAL FBAR,DBSI1E,DBSIOE,CMINT1,CMINT2,CMINT3,CMINT4,
&DTANH, DBSKOE, DBSK1E, DAIE, DBIE, DAIDE, DBIDE

C
INTEGER CHOICE, TEN, PUMP, TWEN

C
DIMENSION XLOW(l00),XHI(l00),WLOW(100),WHI(100),YTMP(8)

C
COMMON /ALL/ CHOICE,ALPHA,PUMP
COMMON /MCMCA/TEN,PI
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COMMON /MCMF/ BETA
COMMON /MCM/ X,XW,XSTAR,XLOW,XHIWLOW,WHI,YTMP,EPS,TWEN

C
C LEA model (pump on/pump off)
C

IF (CHOICE .EQ.l) THEN
GAMA=S

C
C First-order model (pump on/pump off)
C

ELSE IF (CHOICE. EQ.2) THEN
GAMA=S*(1.+(BETA*ALPHA/ (S+ALPHA)))

C
C Layered diffusion model
C

ELSE IF (CHOICE. EQ.3) THEN
IF (PUMP .EQ. 1) THEN
OMEGA=DSQRT (S/ALPHA)

ELSE
OMEGA=DSQRT (5)

ENDIF
GAMA=S* (1.+ (BETA*DTANH (OMEGA) /OMEGA))

C
C Cylindrical model
C

ELSE IF (CHOICE. EQ. 4) THEN
IF (PUMP.EQ.1)THEN
OMEGA=DSQRT (S/ALPHA)

ELSE
OMEGA=~DSQRT (5)

ENDIF
C
C Set up the Bessel functions Il and 10. These are IMSL calls
C

CEYE1=DBS liE(OMEGA) /(DEXP (-ABS (OMEGA)))
CEYEO=DBSIOE (OMEGA) /(DEXP (-ABS (OMEGA)))
GAMA=S* (1.+2 .*BETA*CEYE1/ (OMEGA*CEYEO))

C
C Spherical model
C

ELSE
IF (PUMP. EQ. 1) THEN
OMEGA=DSQRT (S/ALPHA)

ELSE
OMEGA=DSQRT (5)

ENDIF
C
C Set up the Bessel functions ii and iA.
C

EYE1= (OMEGA*DCOSH (OMEGA) -DSINH (OMEGA) )/OMEGA**2.
EYEO=DSINH (OMEGA) IOMEGA
GAMA=S* (1.+3.*BETA*EYEi/ (OMEGA*EYEO))

ENDIF
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C
C Set up the CMBAR equations and constants for the pump on
C
C This X is the the dimensionless radial distance that was
C defined in the main program and is equal to X=XF1*XCONV
C
C Set up the constants asscciated with Equations 3.66 and A.394
C (pump on) . These constants call IMSL external functions to
C solve the Airy (DAIE) and Bairy (DBIE) functions and their
C derivatives, DAIDE (Airy), DBIDE (Bairy). Additionally, due
C to the exponential scaling associated with IMSL routines and
C probles with overflow errors, we establish intermediate
C constants Y1,2,3,4,5,6,7,8 that scale back the Airy and Bairy
C functions and check for overflow and underflow
C

IF (PUMP .EQ. 1) THEN
YW= (XW+l. /(4. *GIAA) )*G~AMA** (1.13.)
YSTAR=(XSTAR+1./(4.*GAMA))*GAMA**(l./3.)
XCONST= (X+1 . /(4. *GJAA) ) *Gp{** (1./3.)
DA=DAIE (XCONST)
DB=DBIE (XCONST)
GA=-. 5*DAIE (YW) +GAMA** (1/3.)*DAIDE (YW)
GB=-.5*DBIE(YW)+GAMA** (1/3.)*DBIDE(YW)
HA=.5*DAIE(YSTAR)+GAMA**(l./3.) *DAIDE(YSTAR)
HB=. 5*DBIE (YSTAR) +GAMA** (1 ./3.) *DBIDE (YSTAR)
DENOMl=GB*HB
DENOM2=GB*HA
YD1=-2./3. *(Yw**1 .5) +2 /3.* (YSTAR**1 .5)
YD2=2 .13. *(YW**l .5) -2.13. *(YSTAR**1 .5)

C
C Check for under/overflow. If there is no under/overflow
C potential then we use the equations as derived, if there is a
C potential under/overflow error then we modify the equations
C

IF(YDW.LT. (-700) .OR. (YD2+DLOG (ABS (DENOM2))) .LT. (-700))
& THEN

CONST1=PI*GB*DA/GA
CONST2=-PI*GB*HA*DB/GA/HB
CONST3=PI*HA*DB/HB
CONST4=-PI*DA
CONST5=PI*GB*DA/GA
CONST 6=-P I*DB
CONST7=PI*HA*DB/HB
CONST8~=-PI*GB*HA*DA/GA/FiB
Yl=-.5*X+4./3.*(YW**1.5)-2./3.*(XCONST**1.5)
Y2=-. 5*X+4 .13. *(YW**l .5\ -4.13. *(YSTAR**l .5) +2.13. *

& (XCONST**1.5)
Y3=-5*X-4./3.*(YSTAR**1.5)+2/3.*IXCONST**1.5)
Y4=-.5*X-.../3.*(XCONST**1.5)
Y5=-.5*X+4./3.*(YW**1.5)-2./3.*(XCONST**1.5)
Y6=-.5*X+2./3.*(XCONST**1.5)
Y7=-.5*X-4./3.*(YSTAR**1.5)+2./3.*(XCONST**1.5)
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Y8~=-. 5*X+4 .13. *(YW**1 .5) -4.13. *(YSTAR**1 .5) -2.13. *
& (XCONST**1.5h

C
ELSE

C
DENOM=DENOM1*DEXP*YD1) -DENOM2*DEXP (YD2)
CONST1=PI *GB*HB*DA/DENOM
Y1=-. 5*)X-2. ./3* (YW**1 .5) +2.13. *(YSTAR**1 .5) -2.13. *

& (XCONST**1.5)
CONST2=-P I*GB*HA*DB/ DENOM
Y2=-. 5*X+2 ./3* (YW**1 .5) -2.13. *(YSTAR**1 .5) +2.13. *

& (XCONST**1.5)
CONST3=PI *GA*HA*DB/DENOM
Y3=-.5*X-2./3*(YW**1.5)-2./3.*(YSTAR**1.5)+2./3.*

& (XCONST**1.5)
CONS1L4=-PI*GA*HB*DA/DENOM
Y4=-.5*X-2./3*(YW**1.5)+2./3.*(YSTAR**1.5)-2./3.*

& (XCONST**1.5)
CONST5=PI*GB*HB*DA/DENOM
Y5=-.5*X+2./3*(YW**1.5)+2./3.*(YSTAR**1.5)-2./3.*

& (XCONST**1.5)
CONST6=-PI*GA*HB*DB/DENOM
Y6=-. 5*X..2 ./3* (YW**1 .5) +2./3. *(YSTAR**1.5) +2.13. *

& (XCONST**1.5)
CONST7=P I*GAHA*DB /DENOM
Y7=-. 5*X-.2 ./3* (YW**1 .5) -2.13. *(YSTAR**1 .5) +2.13. *

& (XCONST**1.5)
CONST8=-PI *GB*HA*DA/DENOM
Y8=-. 5*X+2 ./3* (YW**1 .5) -2.13. *(YSTAR**1 .5) -2.13. *

& (XCONST**1.5)
ENDIF

C
C Set up the integrals in Equations 3.66 and A.394 by calling
C the external functions CMINTl and CMINT2. The XLOW and XHI
C arguments passed correspond to the orthogonal roots
C (abscissas) that were calculated by the GAULEG subroutine
C (Gauss-Legendre) in the main program over the two intervals:
C XW - X and X -XSTAR, and s comes from the DSTFEST subroutine
C Note: The number of integrals set up do not correspond to the
C actual number of integrals shown in Equations 3.66/A.394
C due to scaling requirements and overflow/underflow checks
C

DO 98 I15=1,9
YTMP (115) =0.

98 CONTINUE
DO 100 120=l,TEN
YTMP(1)=CMINT1(CONST1,Y1,GAMA,XLOW(I20),S)*WLOW(I20)

& +YTMP(l)
YTMP (2)=CMINT1 (CONST2,Y2,GAMA,XLOW(I20) ,S) *WLOW(120)

& +YTMP (2)
YTMP (3)=CMINT2 (CONST3,Y3,GAMA,XLOW(I20) ,S) *WLOW(120)

& +YTMP (3)
YTMP(4)=CMINT2(CONST4,Y4,GAMA,XLOW(I20),S)*WLOW(I20)
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& +YTMP (4)
YTMP(5)=CMINT1(CONST5,Y5,GAMA,XHI(120),S)*WHI(I20)

& +YTMP(5)
YTMP (6) =CMINT1 (CONST6, Y6, GAMA, XHI (120) ,S) *WHI (120)

& +YTMP(6)
YTMP(7)=CMINT2(CONST7,Y7,GAMA,XHI(I20),S)*WHI(I20)

& +YTMP(7)
YTMP (8)=CMINT2 (CONST8,Y8,GAMA,XHI (120) ,S) *Wjj(120)

& +YTMP(8)
100 CONTINUE

C
C Solve for CMBAR (Equations 3.66/A.394) by perform the
C numerical integrations by summing CMBAR and YTMP using the
C WLOW and WHI weights that were calculated by the GAULEG
C subroutine (Gauss-Legendre) in the main program over the two
C intervals: XW - X and X -XSTAR
C

CMBAR=0.
DO 102 124=1,8

CMBAR=CMBAR+YTMP (124)
102 CONTINUE

C
ELSE

C
C Set up the constants associated with Equations 3.105 and
C A.755 (pump off) . These constants call IMSL routines K11
C (DBSKlE), KO (DBSKOE), Il (DBSI1E), and 10 (DBSIOE).
C Additionally, due to the exponential scaling associated with
C IMSL routines and probles with overflowi errors, we establish
C intermediate constants Yl,2,3,4,5,6,7,8 that scale back the
C Bessel functions and check for overflow and underflow
C

YW=DSQRT (GAMA) *XW
YSTAR=DSQRT (GAMA) *XSTAR
HK=EPS*DSQRT (GAMA) *DBSK1E (YSTAR) +DBSKOE (YSTAR)
GI=EPS*DSQRT (GAMA) *DBSIlE (YSTAR) -DBS TOE (YSTAR)
CONSTl=-.HK*DBSI0E (DSQRT (GAMA) *X) /GI
Yl=DSQRT (GAMA) *(X-2 .*XSTAR)
CONST2=-DBSKOE (DSQRT (GAMA) *X)
Y2=DSQRT (GAMA) *(-X)
CONST3=-~HK*DBSI0E (DSQRT (GAMA) *X) *DBSIlE (YW) /GI/

& DBSK1E(YW)
Y3=DSQRT (GAMA) *(X+2. *XW-2 .*XSTAR)
CONST4=-DBSKOE (DSQRT (GAMA) *X) *DBSIlE (YW) /DBSK1E (YW)
Y4=DSQRT (GAMA) *(2 *XW...X)
CONST5=-DBSIOE (DSQRT (GAMA) *X) *hK/GI
Y5=DSQRT (GAMA) *(X-2.*XSTAR)
CONST6=-DBSIlE (YW) *DBSKOE (DSQRT (GAMA) *X) *HK/DBSKTE (YW) /

& GI
Y6=DSQRT (GAMA) *(2 .*XW-.2 .*XSTAR-X)

CONST7=-DBSIOE (DSQRT (GAMA) *X)
Y7=DSQRT (GAMA) *)
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CONST8=-DBSIIE (YW) *DBSKOE (DSQRT (GAMA) *X)/DBSK1E (YW)
Y8=DSQRT (GAMA) * (2. *XW-X)

C
C Set up the integrals in Equations 3.105 and A.755 by calling
C the external functions CMINT3 and CMINT4. The XLOW and XHI
C arguments passed correspond to the orthogonal roots
C (abscissas) that were calculated by the GAULEG subroutine
C (Gauss-Legendre) in the main program over the two intervals:
C XW - X and X -XSTAR, and s comes from the DSTFEST subroutine
C Note: The number of integrals set up do not correspond to the
C actual number of integrals shown in Equations 3.105/A.755 due
C to scaling requirements and overflow/underflow checks
C

DO 198 125=1,8
YTMP(125)=0.

198 CONTINUE
DO 200 130=1,TWEN

YTMP(1)=CMINT3(CONST1,Y1,GAMA,XLOW(I30),S)*WLOW(I30)
& +YTMP(l)

YTMP(2)=CMINT3(CONST2,Y2,GAMA,XLOW(I30),S)*WLOW(I30)
& +YTMP(2)

YTMP(3)=CMINT4(CONST3,Y3,GAMA,XLOW(I30),S)*WLOW(I30)
& +YTMP(3)

YTMP(4)=CMINT4(CONST4,Y4,GAMA,XLOW(I30),S)*WLOW(I30)
& +YTMP(4)

YTMP(5)=CMINT3(CONST5,Y5,GAMA,XHI(I30),S)*WLOW(I30)
& +YTMP(5)

YTMP(6)=CMINT3(CONST6,Y6,GAMA,XHI(I30),S)*WLOW(I30)
& +YTMP(6)

YTMP(7)=CMINT4(CONST7,Y7,GAMA,XHI(I30),S)*WLOW(I30)
& +YTMP(7)

YTMP(8)=CMIN'.i(CONST8,Y8,GAMA,XHI(I30),S)*WLOW(I30)
& +YTMP(8)

200 CONTINUE
C
C Solve for CMBAR (Equations 3.105/A.755) by perform the
C numerical integrations by summing CMBAR and YTMP using the
C WLOW and WHI weights that were calculated by the GAULEG
C subroutine (Gauss-Legendre) in the main program over the two
C intervals: XW - X and X -XSTAR
C

CMBAR=0.
DO 202 135=1,8

CMBAR=CMBAR+YTMP(135)
202 CONTINUE

C
ENDIF
RETURN
END

C

C
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C These functions (CMINTI/CMINT2) set up the integranus in the
C integrals of CMBAR for when the pump is on (Equations (3.66)
C and A.394). These functions call on the external function
C FBAR and the AIRY subroutine
C

DOUBLE PRECISION FUNCTION CMINT1(CONST,Y,GAMA,XARG, S)
REAL*8 CONST,Y,GAMA,XARG,S,ARG,DAIE,FBAR,Z
EXTERNAL DAIE,FBAR
ARG= (XARG+l. / (4. *GAMA) ) *GAMA** (1./3.)
CMINTl=CONST*DAIE (ARG) *FBAR (XARG, S) *GAMA** (-./3.)

C
C Because we are numerically unable to scale back the the
C Airy/Bairy functions at the evaluated arguments, we perform a
C check of the exponential power and determine if this value is
C too small for computer computation
C

Z=Y-2./3. * (ARG**I.5) +. 5*XARG
A=Z+DLOG (ABS (CMINTI))
IF(Z.GT.-700..AND.A.GT.-700)THEN

CMINTI=CMINTI*DEXP(Z)
ELSE

CMINTI=0.
ENDIF
RETURN
END

C
DOUBLE PRECISION FUNCTION CMINT2(CONST,Y,GAMA,XARG,S)
REAL*8 CONST,Y,GAMA,XARG,S,ARG,DBIE,FBAR,Z
EXTERNAL DBIE,FBAR
ARG= (XARG+I. / (4. *GAMA) ) *GAMA** (./3.)
CMINT2=CONST*DBIE (ARG) *FBAR (XARG, S) *GAMA** (-i./3.)
Z=Y+2./3. * (ARG**I.5) +. 5*XARG
A=Z+DLOG(ABS(CMINT2))
IF(Z.GT.-700..AND.A.GT.-700)THEN

CMINT2=CMINT2*DEXP(Z)
ELSE

CMINT2=0.
ENDIF
RETURN
END

C
C These functions (CMINT3/CMINT4) set up the integrands in the
C integrals of CMBAR for when the pump is off (Equations
C (3.105) and A.755). These functions call the external
C function FBAR, and the IMSL routines
C

REAL*8 FUNCTION CMINT3(CONST,Y,GAMA,XARG,S)
REAL*8 CONST,Y,GAMA,XARG,S,ARG,DBSIOE,FBAR,Z
EXTERNAL DBSIOE,FBAR
ARG=CONST*XARG*DBSIOE(DSQRT(GAMA)*XARG)*FBAR(XARG, S)

C
C Because we are numerically unable to scale back the the
C Bessel functions at the evaluated arguments, we perform a
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C check of the exponential power and determine if this value is
C too small for computer computation
C

Z=Y+DSQRT(GAMA)*XARG
A=Z+DLOG (ABS (ARG))
IF(Z.GT.-700..AND.A.GT.-700.)THEN

CMINT3=ARG*DEXP (Z)
ELSE

CMINT3=0.
ENDIF
RETURN
END

C
REAL*8 FUNCTION CMINT4(CONST,Y,GAMA,XARG,S)
REAL*8 CONST,Y,GAMA,XARG,S,ARG,DBSKOE,FBAR,Z
EXTERNAL DBSKOE,FBAR
ARG=CONST*XARG*DBSKOE (DSQRT(GAMA) *XARG) *FBAR(XARG, S)
Z=Y-DSQRT (GAMA) *XARG
A=Z+DLOG (ABS (ARG))
IF(Z.GT.-700..AND.A.GT.-700.)THEN

CMINT4=ARG*DEXP(Z)
ELSE

CMINT4=0.
ENDIF
RETURN
END

C

C
DOUBLE PRECISION FUNCTION FBAR(XARG, S)

C
C This is an external function used to set up the parameters
C and calculate the variables associated with FBAR. FBAR is
C defined in the case of the pump on by Equations 3.37/A.62
C (LEA), 3.39/A.81 (First-order), 3.41/A.166 (Layered),
C 3.43/A.244 (Cylindrical), 3.45/A.315 (Spherical) and in the
C case of the pump off by Equations 3.78/A.455 (LEA),
C 3.80/A.463 (First-order), 3.82/A.541 (Layered), 3.84/A.618
C (Cylindrical), and 3.86/A.688 (Spherical). Notice that FBAR
C in both cases only differ by the dimensionless variable XARG
C or the radial distance X
C

REAL*8 XARG,S,ALPHA,BETA,AL,XF1,FI,Y2X,AXROOT,AWAIT,OMEGA,
&INTGRL,YTEMP,XTEMP,YF1,YP1,YPN,YARG,Y2TEMP,Y3TEMP,
&Y4TEMP,ACA, CA, ACIM, XCONV

C
REAL*8 LAYER, CYLNDR, SPHERE,DBSIOE
EXTERNAL LAYER, CYLNDR, SPHERE,DBSIOE

C
INTEGER CHOICE,APOINT,RPOINT,GEOM, PUMP

C
DIMENSION XFI(10),Fl(10),Y2X(1O),AXRCOT(10),AWAIT(10),
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&YTEMP(10),Y2TEMP(10),Y3TEMP(10),Y4TEMP(10),CA(10,10),
&ACA(10)

C
COMMON /ALL/ CHOICE,ALPHA,PUMP
COMMON /MCMF/ BETA
COMMON /MCAF/ APOINT,ACA, CA, GEOM, AWAIT,AXROOT
COMMON /MF/ AL,RPOINT,XFI,FI,Y2X,YTEMP,Y2TEMP,Y3TEMP,

&Y4TEMP,XCONV
C
C XARG corresponds to the XLOW and XHI arguments passed
C from the CMBAR function through the CMINT functions and are
C the orthogonal roots (abscissas) that were calculated by the
C GAULEG subroutine (Gauss-Legendre) in the main program over
C the intervals: XW - X and X -XSTAR. In order to find the
C concentrations associated with these locations we call on the
C SPLINT subroutine to find these values. Since XARG is a
C dimensionless variable and input parameters are in the
C dimensioned domain, we first convert it back before
C interpolating
C

XTEMP=XARG/XCONV
CALL SPLINT(XF1,FI,Y2X,RPOINT,XTEMP,YF1)

C
C The variable STAGNT is used so that a common FBAR can be used
C for when the pump is on and off
C

IF(PUMP.EQ.1)THEN
STAGNT=I.

ELSE
STAGNT=XARG

ENDIF
C
C LEA model
C

IF (CHOTCE.EQ. 1)THEN
C
C Calculate FBAR
C

FBAR=-XARG/ CTAGNT*YFl
C

ELSE
C
C First-order model and diffusion models.
C
C Since GAULEG (Gaussian Quadrature) determines the location of
C the abscissas at nonequally spaced intervals or at intervals
C that do not correspond to the input immobile locations, we
C call on the SPLINE subroutine to give us the second
C derivative of the function at the input values. SPLINE uses
C the first derivative information at the boundaries (YPl/YPN),
C the radial locations (input), and the immobile concentrations
C (input). In turn, SPLINT uses the second derivative
C information from SPLINE and returns a cubic fit immobile
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C region concentration (y-values) associated with the GAULEG
C locations
C

YP1=0.
YPN=I .D30

DO 20 II=I,APOINT
DO 10 12=1,RPOINT

YTEMP(12)=CA(I2,II)
10 CONTINUE

CALL SPLINE(XF1,YTEMP,RPOINT,YP1,YPN,Y2TEMP)
CALL SPLINT(XF1,YTEMP,Y2TEMP,RPOINT,XTEMP,YARG)
Y3TEMP(Il)=YARG

20 CONTINUE
C
C Find y-values at AXROOT perpendicular to radial arm at XARG
C (see above discussion)
C

CALL SPLINE(ACA,Y3TEMP,APOINT,YP1,YPN,Y2TEMP)
DO 30 I3=1,APOINT

C
C Set up the first-order comparison (integral) for the immobile
C region. Recall, we are comparing the immobile region with
C the diffusion models (Equations 3.19/A.145)
C

CALL SPLINT(ACA,Y3TEMP,Y2TEMP,APOINT,AXROOT(I3),
& Y4TEMP(I3))

IF(GEOM.EQ.2)Y4TEMP(I3)=2.DO*AXROOT(I3)*Y4TEMP(I3)
IF(GEOM.EQ.3)Y4TEMP(I3)=3.D0*(AXROOT(I3)**2.)

& *Y4TEMP(I3)
30 CONTINUE

IF(CHOICE.EQ.2)THEN
C
C Perform the numerical integration by calling the AREA
C subroutine
C

CALL AREA(Y4TEMP,AWAIT,APOINT,ACIM)
C
C Calculate FBAR
C

FBAR=-XARG/STAGNT*(YF1+(BETA*ALPHA*ACIM)/(S+ALPHA))
C
C Layered model
C

ELSE IF(CHOICE.EQ.3)THEN
IF(PUMP.EQ.1)THEN

OMEGA=DSQRT(S/ALPHA)
ELSE

OMEGA=DSQRT(S)
ENDIF
DO 100 17=1,APOINT

C
C Call the LAYER function to set up the integrand in the
C integral within FBAR
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C
YTEMP(17)=LAYER(OMEGA,AXROOT(I7),Y4TEMP(I7))

100 CONTINUE
C
C Perform the numerical integration by calling the AREA
C subroutine
C

CALL AREA(YTEMP,AWAIT,APOINT, INTGRL)
C
C Calculate FBAR
C

FBAR=-XARG/STAGNT* (YF1+BETA/DCOSH (OMEGA) *INTGRL)
C
C Cylindrical model
C

ELSE IF (CHOICE.EQ.4)THEN
IF (PUMP.EQ.1)THEN

OMEGA=DSQRT (S/ALPHA)
ELSE

OMEGA=DSQRT (S)
ENDIF
DO 200 18=1,APOINT

C
C Call the CYLNDR function to set up the integrand in the
C integral within FBAR
C

YTEMP(I8)=CYLNDR(OMEGA,AXROOT(I8) ,Y4TEML (I8))
200 CONTINUE

C
C Perform the numerical integration by calling the AREA
C subroutine
C

CALL AREA(YTEMP,AWAIT,APOINT, INTGRL)
C
C Calculate FBAR
C

FBAR=-XARG/STAGNT* (YF1+2. *BETA/ (DBSIOE (OMEGA) / (DEXP
& (-ABS (OMEGA)) ) ) *INTGRL)

C
C Spherical model
C

ELSE
IF (PUMP .EQ. 1) THEN

OMEGA=DSQRT (S/ALPHA)
ELSE

OMEGA=DSQRT (S)
ENDIF
DO 300 19=1,APOINT

C
C Call the SPHERE function to set up the integrand in the
C integral within FBAR
C
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YTEMP(19)=SPHERE(OMEGA,AXROOT(I9) ,Y4TEMP(19))
300 CONTINUE

C
C Perform the numerical integration by calling the AREA
C subroutine
C

CALL AREA(YTEMP,AWAIT,APOINT, INTGRL)
C
C Calculate FBAR
C

FBAR=-XARG/STAGNT*(YFI+3.*BETA/(DSINH(OMEGA)/OMEGA)
& *INTGRL)

C
ENDIF

ENDIF
RETURN
END

C

C
C These external functions set up the integrands within FBAR
C for the layered, cylindrical, and spherical diffusion models
C (pump on/pump off)
C

DOUBLE PRECISION FUNCTION LAYER(OMEGA,Z,R)
REAL*8 OMEGA,Z,R
LAYER=DCOSH(OMEGA*Z)*R
RETURN
END

C
DOUBLE PRECISION FUNCTION CYLNDR(OMEGA,Z,R)
REAL*8 OMEGA,Z,R,DBSIOE
CYLNDR=Z*(DBSIOE(OMEGA*Z)/(DEXP(-ABS(Z*OMEGA))))*R
RETURN
END

C
DOUBLE PRECISION FUNCTION SPHERE(OMEGA,Z,R)
REAL*8 OMEGA,Z,R
SPHERE=Z**2.+(DSINH(OMEGA*Z))/(OMEGA*Z)*R
RETURN
END

C
C******** ****** ****** ****WWW**WWW *W*WW*W*W****** * *******WW* WWW**

C
DOUBLE PRECISION FUNCTION CABAR(S)

C
C This is an external function used to set up the
C parameters and calculate the variables associated with CABAR
C for the diffusion models. CABAR is defined in the case of
C the pump on by Equations A.138 (Layered), A.213
C (Cylindrical), A.286 (Spherical) and in the case of the pump
C off by Equations A.516 (Layered), A.587 (Cylindrical), and
C A.659 (Spherical). Notice that CABAR in both cases only
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C differ by the dimensionless immobile region region solute
C diffusion coefficient (ALPHA) . Also note that CABAR for
C cylinders and spheres uses limits in terms of 'Z' rather than

C z. This is so we can evaluate R between 0 and 1
C

REAL*8 S,ALPHA,PI,CA,ACA,Y2,Z,ZHI,ZLOW,WZHI,WZLOW,IOW,
&AWAIT,CIM,IOZHAT,KOW,KOZHAT,NTGRL1,NTGRL2,YTEMPY2TEMP,
&Y3TEMP, OMEGA, YPl, YPN, AXROOT

C
REAL*8 CMBAR,CAINT1,CAINT2,CAINT3,CAINT4,CAINT5,CAINT6,
&DBSIOE, DBSK0E
EXTERNAL CMBAR,CAINT1,CAINT2,CAINT3,CAINT4,CAINT5,CAINT6,
&DBSIOE, DBSKOE

C
INTEGER CHOICE,TEN,APOINT, IX, GEOM, PUMP

C
DIMENSION CA(l0,l0),ACA(lO),Y2(lO),ZHI(lO),ZLOW(l0),
&AWAIT(10) ,WZHI(lO) ,WZLOW(10) ,YTEMP(l0) ,Y2TEMP(10),
&Y3TEMP (10) ,AXROOT (10)

C
COMMON /ALL/ CHOICE,ALPHA,PUMP
COMMON /MCMCA/ TEN,PI
COMMON /MCAF/ APOINT,ACA, CA, GEOM,AWAIT,AXROOT
COMMON /MCA/ Z,ZHI,ZLOW,WZHI,WZLOW,IX,YTEMP,Y2TEMP,
&Y3TEMP, Y2

C
YP1=0 .DO
YPN=1.DO

C
C Set up the first-order immobile region comparison with the
C diffusion models (Equations 3.19/A.145)
C

DO 100 J1=l,APOINT
YTEMP (Jl) =CA(IX, Jl)
IF(GEOM.EQ.2)YTEMP(j1)=2.DO*AXROOT(Jl)*YTEMP(Jl)
IF(GEOM.EQ.3)YTEMP(jl)=3.DO*(AXROOT(Jl)**2.)*YTEMP(Jl)

100 CONTINUE
C

IF(CHOICE.EQ.2)THEN
C
C Perform the numerical integration by calling the AREA
C subroutine
C

CALL AREA (YTEMP, AWAIT, APOINT, CIM)
C
C Solve for CABAR
C

CABAR= (CIM+ALPHA*CMBAR (5) )/(S+ALPHA)
C

ENDIF
C
C Set up the diffusion models. Note: these models use SPLINE
C and SPLINT to interpolate R at the appropriate GAULEG points
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C
C Layered model
C

IF (CHOICE .EQ. 3) THEN
IF(PUMP.EQ. l)THEN
OMEGA=DSQRT (S/ALPHA)

ELSE
OMEGA=DSQRT (5)

ENDIF
CALL SPLINE (ACA,YTEMP,APOINT,YP1,YPN,Y2)
DO 200 J2=l,TEN

CALL SPLINT(ACA,YTEMP,Y2,APOINT,ZHI(j2),Y2TEMP(j2))
Y2TEMP(J2)=CAINTl(ZHI(j2) ,Y2TEMP(J2) ,OMEGA)
CALL SPLINT(ACA,YTEMP,Y2,APOINT, ZLOW(j2) ,Y3TEMP (J2))
Y3TEMP (j2)=CAINT2 (ZLOW(J2) ,Y3TEMP (J2) ,OMEGA)

200 CONTINUE
C
C Perform the numerical integration by calling the AREA
C subroutine
C

CALL AREA (Y2TEMP, WZHI, TEN, NTGRL1)
CALL AREA (Y3TEMP, WZLOW, TEN, NTGRL2)

C
C Solve for CABAR pump on/pump off
C

IF (PUMP .EQ.l) THEN
CABAR=CMBAR(S) /DCOSH (OMEGA) *DCOSH (OMEGA*Z)

& +DCOSH (OMEGA*Z) / OMEGA*ALPHA*DCOSH (OMEGA)) *NTGRL1
& +DSINH(OMEGA* (l-Z) )/ (OMEGA*ALPHA*DCOSH (OMEGA)) *NTGRL2

ELSE
CABAR=CMBAR(S) /DCOSH (OMEGA) *DCOSH (OMEGA*Z) +

& DCOSH(OMEGA*Z) /(OMEGA*DCOSH (OMEGA)) *NTGRLl+
& DSINH(OMEGA* (l-Z) )/ (OMEGA*DCOSH (OMEGA)) *NTGRL2

ENDIF
C
C Cylindrical model
C

ELSE IF (CHOICE. EQ.4) THEN
IF(PUMP.EQ.1)THEN
OMEGA=DSQRT (S/ALPHA)

ELSE
OMEGA=DSQRT (5)

END IF
CALL SPLINE (ACA,YTEMP,APOINT,YP1,YPN,Y2)
DO 300 J4=l,TEN

CALL SPLINT (ACA,YTEMP,Y2,APOINT, ZHI (J4) ,Y2TEMP (J4))
Y2TEMP (j4)=CAINT3 (ZHI (j4) ,Y2TEMP (j4) ,OMEGA)
CALL SPLINT(ACA,YTEMP,Y2,APOINT,ZLOW(j4) ,Y3TEMP(j4))
Y3TEMP (J4)=CAINT4 (ZLOW(J4) ,Y3TEMP (J4) ,OMEGA)

300 CONTINUE
C
C Perform the numerical integration by calling the AREA
C suvroutine
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C
CALL AREA(Y2TEMP,WZHI,TEN,NTGRL1)
CALL AREA (Y3TEMP, WZLOW, TEN, NTGRL2)

C
C Set up the Bessel functions 10 and KO
C

I0W=DBSI0E (OMEGA) *DEXP (ABS (OMEGA))
IOZHAT=DBSIOE (OMEGA*Z) *DEXP (ABS (OMEGA*Z))
K0W=DBSKOE (OMEGA) *DEXP (-OMEGA)
KOZHAT=DBSKOE (OMEGA*Z) *DEXP (-OMEGA*Z)

C
C Solve for CABAR (pump on/pump off)
C

IF (PUMP.EQ. l)THEN
CABAR=CMBAR(S) /IOW*I0ZHAT-I0ZHAT/ ((OMEGA**2.)

& *ALPHA*IOW) *NTGRLl1 (KOW*I0ZHAT-I0W*KOZHAT)/
& ((OMEGA**2. )*ALPHA* lOW) *NTGRL2

ELSE
CABAR=CMBAR(S) /I0W*I0ZHAT-I0ZHAT/ ((OMEGA**2.) *IQq)

& *NTGRL1-(K0W*I0ZHAT-IOW*K0ZHAT)/ ((OMEGA**2.)*IOW)
& *NTGRL2

ENDIF
C
C Spherical model
C

ELSE IF(CHOICE.EQ. 5)THEN
CALL SPLINE (ACA,YTEMP,APOINT,YPI,YPN,Y2)
IF (PUMP. EQ. 1) THEN
OMEGA=DSQRT (S/ALPHA)

ELSE
OMEGA=DSQRT (5)

ENDIF
DO 400 J6=l,TEN

CALL SPLINT(ACA,YTEMP,Y2,APOINT,ZHI(j6) ,Y2TEMP(J6))
Y2TEMP (j6)=CAINT5 (ZHI (J6) ,Y2TEMP (J6) IOMEGA)
CALL SPLINT(ACA,YTEMP,Y2,APOINT,ZLOW(j6) ,Y3TEMP(j6))
Y3TEMP(J6)=CAINT6(ZLOW(J6) ,Y3TEMP(j6) IOMEGA)

400 CONTINUE
C
C Perform the numerical integration by calling the AREA
C subroutine
C

CALL AREA(Y2TEMP,WZHI,TEN,NTGRL1)
CALL AREA (Y3TEMP, WZLOW, TEN, NTGRL2)

C
C Set up the Bessel functions 10 and kO
C

IOW=DSINH (OMEGA) /OMEGA
IOZHAT=DSINH(OMEGA*Z) /(OMEGA*Z)
KOW=PI*DEXP (-OMEGA) /2 .DO/OMEGA
KOZHAT=PI*DEXP (-OMEGA*Z) /2 .DO/OMEGA/Z

C
C Solve for CABAR (pump on/pump off)
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C
IF (PUMP. EQ.l) THEN
CABAR=CMBAR(S) /IOW*IOZHAT-2 .DO*IOZHAT/ (PI* (OMEGA**2.) *

& ALPHA*IOW) *NTGRLl-...D0*(KOW*IOZHAT>IOW*KOZHAT)/
& (PI* (OMEGA**2. )*ALPHA*IOW) *NTGRL2

ELSE
CABAR=CMBAR(S) /IOW*IOZHAT-2 .DO*IOZHAT/ (P1* (OMEGA**2.)

& *IOW)*NTGRL1-2DO*(KOW*IOZHAT..IOW*KOZHAT)/(PI*
& (OMEGA**2. ) * OW) *NTGRL2

ENDIF
END IF
RETURN
END

C

C
C These external functions set up the integrands within CABAR
C for the layered, cylindrical, and spherical diffusion models
C (pump on/pump off)
C

DOUBLE PRECISION FUNCTION CAINTi (Z,R, OMEGA)
REAL*8 OMEGA,Z,R
CAINT1=DSINH ((OMEGA) * (-Z) )*R
RETURN
END

C
DOUBLE PRECISION FUNCTION CAINT2(Z,R,OMEGA)
REAL*8 OMEGA,Z,R
CAINT2=DCOSH (OMEGA*Z) *R
RETURN
END

C
DOUBLE PRECISION FUNCTION CAINT3 (Z,R, OMEGA)
REAL*8 OMEGA, Z,R,DBSKOE,DBSIOE
EXTERNAL DBSKOE, DBSIOE
CAINT3= (DBSKOE (OMEGA) *DBSIOE (Z*OMEGA) *DEXP (OMEGA* (Z-l.))
&-DBSIOE (OMEGA) *DBSKOE (Z*OMEGA) )*DEXP
& (OMEGA* (1.-Z) )*R*Z*OMEGA**2.
RETURN
END

C
DOUBLE PRECISION FUNCTION CAINT4 (Z,R, OMEGA)
REAL*8 Z,R,DBSIOE,OMEGA
EXTERNAL DBSIOE
CAINT4=Z*OMEGA*DBSIOE (Z*OMEGA) *DEXP (AS (Z*OMEGA) )*R*OMEGA
RETURN
END

C
DOUBLE PRECISION FUNCTION CAINT5 (Z,R,OMEGA)
REAL*8 OMEGA,Z,R,PI
PI=4. *DATAN(1 .DO)
CAINT5=PI* (DEXP (-OMEGA) /(2. *OMEGA) *DSINH (Z*OMEGA) /
& (Z*OMEGA) -DSINH (OMEGA) /OMEGA*DEXP (-Z*OMEGA) /
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&(2.*Z*OMEGA))*R*Z*Z*OMEGA**3.
RETURN
END

C
DOUBLE PRECISION FUNCTION CAINT6(Z,R,OMEGA)
REAL*8 Z,R,OMEGA
CAINT6=DSINH(Z*OMEGA)/(Z*OMEGA)*R*Z*Z*OMEGA**3.
RETURN
END

C

C
C SPLINE subroutine
C
C SPLINE (X,Y,N,YP1,YPN,Y2)
C
C Purpose - To get an interpolation formula that is smooth in
C the first derivative, and continuous in the second
C derivative, both within an interval and at its
C boundaries
C
C Usage - CALL SPLINE
C
C Reference - Press, William H., Saul A. Teukolsky, William T.
C Vetterling, and Brian P. Flannery. Numerical
C Recipes in FORTRAN. Cambridge, MA: Cambridge
C University Press, 1992.
C
C Arguments - Given arrays X(I:N) and Y(I:N) containing a
C tabulated function, with Xl < X2 < X3 < ... < XN,
C and given values YP1 and YPN for the first
C derivative of the interpolating function at
C points 1 and N, respectively, this routine
C returns an array Y2(I:N) of length N which
C contains the second derivatives of the
C interpoassociated function at the tabulated
C points X sub i. If YPI and/or YPN are equal to
C 1.E30 or larger, the routine is signaled to set
C the corresponding boundary condition for a
C natural spline, with zero second derivative on
C that boundary. Parameter NMAX is the largest
C anticipated value of N.
C

SUBROUTINE SPLINE(X,Y,N,YP1,YPN,Y2)
INTEGER N,NMAX
REAL*8 YP1,YPN,X(N),Y(N),Y2(N)
PARAMETER (NMAX=500)
INTEGER I,K
REAL*8 P,QN,SIG,UN,U(NMAX)
IF(YPl.GT.0.99E30) THEN

Y2 (1)=0.
U(l)=0.

ELSE
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Y2 (1)=-O.5
U(1)--(3./(X(2)-X(1)))*((Y(2)-YI))/(X(2)-X(1))-YPI)

ENDIF
DO 1550, I=2,N-1

SIG=(X(I)-X(I-I))/(X(I+I)-X(I-I))

P=SIG*Y2 (I-l) +2.
Y2 (I)=(SIG-1.)/P
U(I)=(6o.*((Y(I+I)-Y(I))/(X(I+I)-X(I))-(Y(I)-

& Y (I-l)) /(X (I)-X (I-l)) ) /(X(I+l) -X (I-l)) -SIG*U (I-l))/P

1550 CONTINUE
IF(YPN.GT. 0.99E30)THEN
QN=O.
UN=0.

ELSE
QN=-0.5
UN=(3./ (X(N)-X(N-I)))* (YPN-(Y(N)-Y(N-I))/ (X(N)-X(N-I)))

ENDIF
Y2 (N)=(UN-QN*U(N-1)) / (QN*Y2 (N-1)+i.)
DO 1510 K=N-1,1,-I

Y2 (K)=Y2 (K) *Y2 (K+I) +U(K)
1510 CONTINUE

RETURN
END

C

C
C SPLINT subroutine
C
C SPLINT (XA,YA,Y2A,N,X,Y)
C
C Purpose - To obtain values of the interpolated function for
C any value of X (for "SPLINE interpolation")
C
C Usage - CALL SPLINT
C
C Reference - Press, William H., Saul A. Teukolsky, William T.
C Vetterling, and Brian P. Flannery. Numerical
C Recipes in FORTRAN. Cambridge, MA: Cambridge
C University Press, 1992.
C
C Arguments - Given the arrays XA(l:n) and YA(1:N) of length
C N, which tabulate a function (with XA's in
C order), and given the array Y2A(I:N), which is
C the output from SPLINE, and given a value X,
C this routine returns a cubic-spline interpolated
C value Y.
C

SUBROUTINE SPLINT(XA, YA, Y2A, N,X,Y)
INTEGER N,K,KHI,KLO
REAL*8 X,Y,XA(N),Y2A(N),YA(N),A,B,H
KLO=I
KHI=N

1520 IF(KHI-KLO.GT.I)THEN
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K=(KHI+KLO)/2
IF (XA (K) .GT.X) THEN

KHI=K
ELSE

KLO=K
ENDIF
GOTO 1520

ENDIF
H=XA(KHI) -XA(KLO)
IF(H.EQ.0.)PAUSE ' BAD XA INPUT IN SPLINT'
A= (XA (KHI) -X) /H
B= (X-XA (KLO))/H
Y=A*YA(KLO) +B*YA(KHI) + ((A**3-A) *Y2A(KLO) + (B**3-

&B)*Y2A(KHI))* (H**2)/6.
RETURN
END

C

C
C GAULEG subroutine
C
C GAULEG (Xl,X2,X,W,N)
C
C Purpose - To achieve integration formulas of higher order by
C providing the freedom to choose the weighting
C coefficients and the location of the abscissas at
C which the function is to be evaluated
C
C Usage - CALL GAULEG
C
C Reference - Press, William H., Saul A. Teukolsky, William T.
C Vetterling, and Brian P. Flannery. Numerical
C Recipes in FORTRAN. Cambridge, MA: Cambridge
C University Press, 1992.
C
C Arguments - Given the lower and upper limits of integration
C 'X1' and 'X2,' and given the number of points
C 'N,' this routine returns arrays X(1:N) and
C W(I:N) of length N, containing the abscissas and
C weights of the Gauss-Legendre N-point Quadrature
C formula.
C

SUBROUTINE GAULEG(Xl,X2,X,W,N)
INTEGER N
REAL*8 Xl,X2,X(N),W(N)
DOUBLE PRECISION EPS
PARAMETER (EPS=3.D-14)
INTEGER I,J,M
DOUBLE PRECISION PI,P2,P3,PP,XL,XM,Z,Z1,PIE
M=(N+I) /2
XM=0.5D0* (X2+Xl)
XL=0.5D0* (X2-Xl)
PIE=4.DO*DATAN(I.DO)
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DO 1600 I=1,M
Z=COS(PIE*(I-.25D0)/(N+0.5DO))

1601 CONTINUE
Pl=l.DO
P2=0 .DO
DO 1610, J=1,N

P3=P2
P2=PI
Pl= ((2.DO*J-I .DO) *Z*P2- (J-1 .DO) *P3)/J

1610 CONTINUE
PP=N*(Z*P1-P2)/ (Z*Z-1.DO)
z1=z
Z=ZI-PI/PP
IF(ABS(Z-ZI) .GT.EPS) GOTO 1601
X (I) =XM-XL*Z
X(N+1-I) =XM+XL*Z
W(I)=2.DO*XL/((I.DO-Z*Z)*PP*PP)
W (N+1-I) =W (I)

1600 CONTINUE
RETURN
END

C

C
SUBROUTINE AREA(Y,W.N,SUM)

C
C This is a user defined subroutine used to numerically
C calculates the integral of a function, using values Y(i), of
C length N, at the roots of t-e Legendre polynomial. The
C weight functions, W(i), are calculated from subroutine
C GAULEG. Function values, Y(i), come from subroutine SPLINT.
C

INTEGER I,N
REAL*8 Y(N),W(N),SUM
SUM=0.DO
DO 1700 I=1,N

SUM=SUM+Y (I) *W(I)
1700 CONTINUE

RETURN
END

C

C
C Stehfest subroutine
C
C DSTFEST (F,N,T,FA,ICOUNT)
C
C Purpose - Inverse Laplace transform of a user supplied double
C precision fur Lion
C
C Usage - CALL DSTFEST (F,N,T,FA,ICOUNT)
C
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C Reference - Stehfest, H., Numerical inversion of Laplace
C transforms, Communications of the ACM, 13(11,
C 47-49, 1970.
C
C Arguments F - A user supplied double precision function,
C F(S), specifying the Laplace transform whose
C inverse is to be calculated (INPUT). The
C calling sequence of this function must be of the
C form F(S) where s is a double precision
C variable. F should be type EXTERNAL in the main
C program.
C
C N - An even number which affects the precision of
C the calculation (INPUT). For double precision,
C N=18 has been shown to provide mFximum accuracy
C (Stehfest, 1970).
C
C T - A vector of length ICOUNT containing the
C points at which the inverse Laplace transform is
C to be calculated (INPUT).
C
C FA - Output vector of length ICOUNT. FA(I)
C contains the value of the ii.verse Laplace
C transform of the user supplied function at T(I).
C
C ICOUNT - The number of points at which the
C inverse Laplace transform is to be calculated
C INPUT).
C

SUBROUTINE DSTFEST (F,N,T,FA, ICOUNT)
IMPLICIT REAL*8 (A-H,O-Z)
INTEGER SN,N
DIMENSION G(20), H(10), V(20), T(ICOUNT), FA(ICOUNT)
M=0
DO 999 J=l,ICOUNT

IF (M.EQ.N) GOTO 10
G(0)=1.0
NH=N/2
DO 20 I=1,N

G (I)=G(I-1) *I
20 CONTINUE

H (1) =2. /G (NE-I)
DO 30 I=2,NH

h(I)=I**NH*G(2*I) /(G(NH-I)*G(I)*G(I-1))
30 CONTINUE

SN=(-l) ** (NH+l)
DO 40 I=I,N

V(I)=0.
KM=INT ((I+1)/2)
IF (I.LT.NH) GOTO 140
DO 41 K=KM,NH

V(I)=V(I)+H(K)/(G(I-K)*G(2*K-I))
41 CONTINUE

C-33



GOTO 45
140 DO 42 K=KM,I

42 CONTINUE
45 V(I)=SN*V(I)

SN=-SN
40 CONTINUE

M=N
10 FA(J)=0.

A=DLOG (2. DO) /IT (J)
DO 50 I=1,N

FA(J)=FA(J)+V(I) *F(I*A)
50 CONTINUE
999 FA(J)=A*FA(J)

RETURN
END

C
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